Learn More
We demonstrated the remote control of insects in free flight via an implantable radio-equipped miniature neural stimulating system. The pronotum mounted system consisted of neural stimulators, muscular stimulators, a radio transceiver-equipped microcontroller and a microbattery. Flight initiation, cessation and elevation control were accomplished through(More)
Simultaneously measuring the activities of all neurons in a mammalian brain at millisecond resolution is a challenge beyond the limits of existing techniques in neuroscience. Entirely new approaches may be required, motivating an analysis of the fundamental physical constraints on the problem. We outline the physical principles governing brain activity(More)
We present an implantable flight control microsystem for a cyborg beetle (Fig. 1). The system consists of multiple inserted neural and muscular stimulators, a visual stimulator, a polyimide assembly and a microcontroller. The system is powered by two size 5 cochlear microbatteries. The insect platform is Cotinis texana, a 2 cm long, 1-2 gram Green June(More)
Efforts to engineer synthetic gene networks that spontaneously produce patterning in multicellular ensembles have focused on Turing's original model and the "activator-inhibitor" models of Meinhardt and Gierer. Systems based on this model are notoriously difficult to engineer. We present the first demonstration that Turing pattern formation can arise in a(More)
A major hurdle in brain-machine interfaces (BMI) is the lack of an implantable neural interface system that remains viable for a lifetime. This paper explores the fundamental system design trade-offs and ultimate size, power, and bandwidth scaling limits of neural recording systems built from low-power CMOS circuitry coupled with ultrasonic power delivery(More)
The continuing miniaturization of digital circuits and the development of low power radio systems coupled with continuing studies into the neurophysiology and dynamics of insect flight are enabling a new class of implantable interfaces capable of controlling insects in free flight for extended periods. We provide context for these developments, review the(More)
We present several important advances on the flight-control microsystem for a cyborg beetle presented recently [1]. Giant beetles (Mecynorhina torquata) were employed to achieve larger payloads than the previously used Cotinis texana beetles. A new turning control method based on direct neural stimulation of the optic lobes (compound eyes) was achieved as(More)
Tiny flying robots that are part machine and part insect may one day save lives in wars and disasters T he common housefly is a marvel of aeronautical engineering. One reason the fly is a master at evading the handheld swatter is that its wings beat remarkably fast—about 200 times a second. To achieve this amazing speed, the fly makes use of complex(More)
A major hurdle in brain-machine interfaces (BMI) is the lack of an implantable neural interface system that remains viable for a substantial fraction of the user's lifetime. Recently, sub-mm implantable, wireless electromagnetic (EM) neural interfaces have been demonstrated in an effort to extend system longevity. However, EM systems do not scale down in(More)