Learn More
Simultaneously measuring the activities of all neurons in a mammalian brain at millisecond resolution is a challenge beyond the limits of existing techniques in neuroscience. Entirely new approaches may be required, motivating an analysis of the fundamental physical constraints on the problem. We outline the physical principles governing brain activity(More)
We demonstrated the remote control of insects in free flight via an implantable radio-equipped miniature neural stimulating system. The pronotum mounted system consisted of neural stimulators, muscular stimulators, a radio transceiver-equipped microcontroller and a microbattery. Flight initiation, cessation and elevation control were accomplished through(More)
We present an implantable flight control microsystem for a cyborg beetle (Fig. 1). The system consists of multiple inserted neural and muscular stimulators, a visual stimulator, a polyimide assembly and a microcontroller. The system is powered by two size 5 cochlear microbatteries. The insect platform is Cotinis texana, a 2 cm long, 1-2 gram Green June(More)
We present the first report of radio control of a cyborg beetle in free-flight. The microsystem (Figs. 1, 2) consisted of a radio-frequency receiver assembly, a micro battery and a live giant flower beetle platform (Mecynorhina polyphemus or Mecynorhina torquata). The assembly had six electrode stimulators implanted into the left and right optic lobes,(More)
A major hurdle in brain-machine interfaces (BMI) is the lack of an implantable neural interface system that remains viable for a lifetime. This paper explores the fundamental system design trade-offs and ultimate size, power, and bandwidth scaling limits of neural recording systems built from low-power CMOS circuitry coupled with ultrasonic power delivery(More)
This paper presents a low-cost inkjet dosing system capable of continuous, two-dimensional spatiotemporal regulation of gene expression via delivery of diffusible regulators to a custom-mounted gel culture of E. coli. A consumer-grade, inkjet printer was adapted for chemical printing; E. coli cultures were grown on 750 microm thick agar embedded in(More)
Efforts to engineer synthetic gene networks that spontaneously produce patterning in multicellular ensembles have focused on Turing's original model and the "activator-inhibitor" models of Meinhardt and Gierer. Systems based on this model are notoriously difficult to engineer. We present the first demonstration that Turing pattern formation can arise in a(More)
BACKGROUND To dissect the intricate workings of neural circuits, it is essential to gain precise control over subsets of neurons while retaining the ability to monitor larger-scale circuit dynamics. This requires the ability to both evoke and record neural activity simultaneously with high spatial and temporal resolution. NEW METHOD In this paper we(More)
A major hurdle in brain-machine interfaces (BMI) is the lack of an implantable neural interface system that remains viable for a substantial fraction of the user's lifetime. Recently, sub-mm implantable, wireless electromagnetic (EM) neural interfaces have been demonstrated in an effort to extend system longevity. However, EM systems do not scale down in(More)