Learn More
A compartmental model was built in order to study the circulation and impact of Feline Leukemia Virus (FeLV) in populations of domestic cats. The model was tested with data from a long-term study of several feline populations. The study of stability shows that FeLV is maintained in the population with a stable equilibrium and a slight reduction of(More)
Infectious diseases that affect their host on a long timescale can regulate the host population dynamics. Here we show that a strong Allee effect can lead to complex dynamics in simple epidemic models. Generally, the Allee effect renders a population bistable, but we also identify conditions for tri- or monostability. Moreover, the disease can destabilize(More)
BACKGROUND AND AIMS Epidemiological simulation models coupling plant growth with the dispersal and disease dynamics of an airborne plant pathogen were devised for a better understanding of host-pathogen dynamic interactions and of the capacity of grapevine development to modify the progress of powdery mildew epidemics. METHODS The first model is a complex(More)
The paper proposes a model explaining the spatial variation in incidence of nephropathia epidemica in Europe. We take into account the rodent dynamic features and the replicative dynamics of the virus in animals, high in the acute phase of newly infected animals and low in the subsequent chronic phase. The model revealed that only vole populations with(More)
Infectious diseases are often regarded as possible explanations for the sudden collapse of biological invasions. This phenomenon is characterized by a host species, which firstly can successfully establish in a non-native habitat, but then spontaneously disappears again. This study proposes a reaction-diffusion model consisting of a simple SI disease with(More)
An SI epidemic model for a host with two viral infections circulating within the population is developed, analyzed, and numerically simulated. The model is a system of four differential equations which includes a state for susceptible individuals, two states for individuals infected with a single virus, one which is vertically transmitted and the other(More)
The predictions of epidemic models are remarkably affected by the underlying assumptions concerning host population dynamics and the relation between host density and disease transmission. Furthermore, hypotheses underlying distinct models are rarely tested. Domestic cats (Felis catus) can be used to compare models and test their predictions, because cat(More)
A deterministic model was constructed for studying the circulation of Feline Immunodeficiency Virus (FIV), a feline retrovirus homologous to Human Immunodeficiency Virus (HIV), within populations of domestic cats. The model has been tested with data generated by a long-term study of several natural cat populations. Simulations and a study of stability show(More)
As any epidemic on plants is driven by the amount of susceptible tissue, and the distance between organs, any modification in the host population, whether quantitative or qualitative, can have an impact on the epidemic dynamics. In this paper we examine using examples described in the literature, the features of the host plant and the use of crop management(More)
Bluetongue is a seasonal midge-borne disease of ruminants with economic consequences on herd productivity and animal trade. Recently, two new modes of transmission have been demonstrated in cattle for Bluetongue virus serotype 8 (BTV8): vertical and pseudo-vertical transmission. Our objective was to model the seasonal spread of BTV8 over several years in a(More)