Learn More
Docosahexaenoic acid (DHA) is essential for the growth and functional development of the brain in infants. DHA is also required for maintenance of normal brain function in adults. The inclusion of plentiful DHA in the diet improves learning ability, whereas deficiencies of DHA are associated with deficits in learning. DHA is taken up by the brain in(More)
Hormones and growth factors induce in many cell types the production of phosphatidic acid (PA), which has been proposed to play a role as a second messenger. We have previously shown in an acellular system that PA selectively stimulates certain isoforms of type 4 cAMP-phosphodiesterases (PDE4). Here we studied the effect of endogenous PA on PDE activity of(More)
N-Arachidonoylethanolamine (anandamide; AEA) and 2-arachidonoylglycerol (2-AG), the two proposed endogenous agonists of cannabinoid receptors, and the putative AEA biosynthetic precursor, N-arachidonoylphosphatidylethanolamine (NArPE), were identified in bovine retina by means of gas chromatography-electron impact mass spectrometry (GC-EIMS). This technique(More)
The terminal adipose differentiation of Ob1771 cells, characterized by glycerol-3-phosphate dehydrogenase activity and triacylglycerol accumulation, was studied in serum-free hormone-supplemented medium containing growth hormone, tri-iodothyronine, insulin, transferrin and fetuin. Arachidonic acid was able to substitute for a crude adipogenic fraction(More)
The apparent retroconversion of docosahexaenoic acid (22:6n-3) to eicosapentaenoic acid (20:5n-3) and docosapentaenoic acid (22:5n-3) was studied in vivo, in rats and humans, after they ingested a single dose of triacylglycerols containing [13C]22:6n-3 ([13C]22:6-triacylglycerol), without 22:6n-3 dietary supplementation. The amount of apparent(More)
Epidemiologic studies report cardiovascular protection conferred by omega-3 fatty acids, in particular docosahexaenoic acid (DHA). However, few experimental studies have addressed its potential in acute stroke treatment. The present study used multimodal MRI to assess in vivo the neuroprotection conferred by DHA and by a brain-targeting form of(More)
n - 3 polyunsaturated fatty acids may protect against vascular diseases, however, their high accumulation in membranes may increase lipid peroxidation and subsequently induce deleterious effects in patients suffering from oxidative stress. This led us to investigate in vitro the dose-dependent effect of docosahexaenoic acid (DHA) on the redox status of(More)
OBJECTIVE To determine the effect of supplementation with increasing doses of docosahexaenoic acid (DHA), as the only n-3 polyunsaturated fatty acid (PUFA), on low-density lipoprotein (LDL) redox status and oxidizability. METHODS Twelve healthy men aged 53-65 years ingested consecutive doses of DHA (200, 400, 800 and 1600 mg/day), each dose for two weeks.(More)
A total of ten healthy elderly subjects ingested one capsule of 600 mg (corresponding to 150 mg docosahexaenoic acid and 30 mg eicosapentaenoic acid) RO-PUFA triglycerides per day and ten others ingested one capsule of 600 mg sunflower oil as a placebo for 42 days. In the n-3 polyunsaturated fatty acids (PUFA) group, a significant decrease of systolic blood(More)
Dicarbonyl compounds such as methylglyoxal and glyoxal are extremely reactive glycating agents involved in the formation of advanced glycation end products (AGEs), which in turn are associated with diabetic vascular complications. Guanidino compounds such as aminoguanidine appear to inhibit AGE formation by reacting with alpha-dicarbonyl compounds. The aim(More)