Learn More
Around the world, the human-induced collapses of populations and species have triggered a sixth mass extinction crisis, with rare species often being the first to disappear. Although the role of species diversity in the maintenance of ecosystem processes has been widely investigated, the role of rare species remains controversial. A critical issue is(More)
Difficulties in scaling up theoretical and experimental results have raised controversy over the consequences of biodiversity loss for the functioning of natural ecosystems. Using a global survey of reef fish assemblages, we show that in contrast to previous theoretical and experimental studies, ecosystem functioning (as measured by standing biomass) scales(More)
 The effect of marine reserve protection on coral reef fish communities was studied on five islands located in the southwest lagoon of New Caledonia. Commercial fish communities and Chaetodontidae, sampled before fishing prohibition and after five years of protection, were compared. Reference stations were also sampled to assess variability in unprotected(More)
The humphead wrasse, Cheilinus undulatus, is the largest living member of the family Labridae, with a maximum size exceeding 2 m and 190 kg. Its geographic range covers much of the Indo-Pacific. The species is not common, recorded maximum adult densities rarely exceeding 20 fish/10,000 m2. Small individuals are typically associated with high coral cover;(More)
Most marine organisms disperse via ocean currents as larvae, so it is often assumed that larval-stage duration is the primary determinant of geographic range size. However, empirical tests of this relationship have yielded mixed results, and alternative hypotheses have rarely been considered. Here we assess the relative influence of adult and larval-traits(More)
Climatic niche conservatism, the tendency of species-climate associations to remain unchanged across space and time, is pivotal for forecasting the spread of invasive species and biodiversity changes. Indeed, it represents one of the key assumptions underlying species distribution models (SDMs), the main tool currently available for predicting range shifts(More)
Coral reefs are increasingly being altered by a myriad of anthropogenic activities and natural disturbances. Long-term studies offer unique opportunities to understand how multiple and recurrent disturbances can influence coral reef resilience and long-term dynamics. While the long-term dynamics of coral assemblages have been extensively documented, the(More)
Ecological factors may influence the number of parasites encountered and, thus, parasite species richness. These factors include diet, gregarity, conspecific and total host density, habitat, body size, vagility, and migration. One means of examining the influence of these factors on parasite species richness is through a comparative analysis of the(More)
Parasite species have been widely used as fish host migration tag or as indicators of local pollution. In this paper our approach is to consider the entire parasite community as a biological indicator of the fish environmental conditions. Seven fish species belonging to the Apogonidae, Apogon bandanensis, A. cookii, A. doderleini, A. norfolkensis, A.(More)
When tropical systems lose species, they are often assumed to be buffered against declines in functional diversity by the ability of the species-rich biota to display high functional redundancy: i.e., a high number of species performing similar functions. We tested this hypothesis using a ninefold richness gradient in global fish faunas on tropical reefs(More)