Learn More
Molecular methods are used widely to measure genetic diversity within populations and determine relationships among species. However, it is difficult to observe genomic evolution in action because these dynamics are too slow in most organisms. To overcome this limitation, we sampled genomes from populations of Escherichia coli evolving in the laboratory for(More)
Twelve populations of Escherichia coli B all lost D-ribose catabolic function during 2,000 generations of evolution in glucose minimal medium. We sought to identify the population genetic processes and molecular genetic events that caused these rapid and parallel losses. Seven independent Rbs(-) mutants were isolated, and their competitive fitnesses were(More)
As part of a long-term evolution experiment, two populations of Escherichia coli B adapted to a glucose minimal medium for 10,000 generations. In both populations, multiple IS-associated mutations arose that then went to fixation. We identify the affected genetic loci and characterize the molecular events that produced nine of these mutations. All nine were(More)
A transposable element (TE) is a mobile sequence present in the genome of an organism. TEs can cause lethal mutations by inserting into essential, genes, promoting deletions or leaving short sequences upon excision. They therefore may be gradually eliminated from mixed populations of haploid micro-organisms such asEscherichia coli if they cannot balance(More)
Bacterial subclones recovered from an old stab culture of Escherichia coli K-12 revealed a high degree of genetic diversity, which occurred in spite of a very reduced rate of propagation during storage. This conclusion is based on a pronounced restriction fragment length polymorphism (RFLP) detected upon hybridization with internal fragments of eight(More)
Intrachromosomal homologous recombination in whole tobacco plants was analyzed using β-glucuronidase as non-selectable marker. We found that recombination frequencies were additive for transgenes in allelic positions and could be enhanced by treatment of plants with DNA-damaging agents. We compared the patterns of distribution of recombination events of(More)
Insertion Sequence (IS) elements are mobile genetic elements widely distributed among bacteria. Their activities cause mutations, promoting genetic diversity and sometimes adaptation. Previous studies have examined their copy number and distribution in Escherichia coli K-12 and natural isolates. Here, we map most of the IS elements in E. coli B and compare(More)
Plasmid pGBG1 was constructed to isolate mobile genetic elements in a wide variety of gram-negative bacteria. The mutation target, carried on a broad-host-range vector, allows positive selection for tetracycline resistance. In tests using several gram-negative bacteria we could detect transposition events of either insertion sequences or transposons. A new(More)
The neural crest (NC) of vertebrate embryos yields cell types belonging to the neural, melanocytic and mesectodermal lineages. To test the possibility that the precursors of these lineages segregate from pluripotent cells by a process involving stochastic determinants, we have analyzed with statistical methods the associations between six differentiated(More)
The transposon Tn5 expresses a gene, ble, whose product increases the viability of Escherichia coli and also confers resistance to the DNA-cleaving antibiotic bleomycin and the DNA-alkylating agent ethylmethanesulphonate. We find that the Ble protein induces expression of an alkylation inducible gene, aidC, and that both the AidC gene product and DNA(More)