Michalis Vazirgiannis

Learn More
Cluster analysis aims at identifying groups of similar objects and, therefore helps to discover distribution of patterns and interesting correlations in large data sets. It has been subject of wide research since it arises in many application domains in engineering, business and social sciences. Especially, in the last years the availability of huge(More)
Spatio-temporal databases deal with geometries changing over time. The goal of our work is to provide a DBMS data model and query language capable of handling such time-dependent geometries, including those changing continuously that describe <italic>moving objects</italic>. Two fundamental abstractions are <italic>moving point</italic> and <italic>moving(More)
Web personalization is the process of customizing a Web site to the needs of specific users, taking advantage of the knowledge acquired from the analysis of the user's navigational behavior (usage data) in correlation with other information collected in the Web context, namely, structure, content, and user profile data. Due to the explosive growth of the(More)
Multimedia applications usually involve a large number of multimedia objects (texts, images, sounds etc.). Spatial and temporal relationships among these objects should be efficiently supported and retrieved within a multimedia authoring tool. In this paper we present several spatial, temporal and spatio-temporal relationships of interest and propose(More)
Clustering is an unsupervised process since there are no predefined classes and no examples that would indicate grouping properties in the data set. The majority of the clustering algorithms behave differently depending on the features of the data set and the initial assumptions for defining groups. Therefore, in most applications the resulting clustering(More)
Spatio-temporal databases deal with geometries changing over time. In general, geometries cannot only change in discrete steps, but continuously, and we are talking about moving objects. If only the position in space of an object is relevant, then moving point is a basic abstraction; if also the extent is of interest, then the moving region abstraction(More)
The computation of relatedness between two fragments of text in an automated manner requires taking into account a wide range of factors pertaining to the meaning the two fragments convey, and the pairwise relations between their words. Without doubt, a measure of relatedness between text segments must take into account both the lexical and the semantic(More)
Clustering is a mostly unsupervised procedure and the majority of the clustering algorithms depend on certain assumptions in order to define the subgroups present in a data set. As a consequence, in most applications the resulting clustering scheme requires some sort of evaluation as regards its validity. In this paper we present a clustering validity(More)
Skyline query processing has received considerable attention in the recent past. Mainly, the skyline query is used to find a set of non dominated data points in a multidimensional dataset. While most previous work has assumed a centralized setting, in this paper we address the efficient computation of subspace skyline queries in large-scale peer-to-peer(More)
Clustering results validation is an important topic in the context of pattern recognition. We review approaches and systems in this context. In the first part of this paper we presented clustering validity checking approaches based on internal and external criteria. In the second, current part, we present a review of clustering validity approaches based on(More)