Learn More
In an effort to improve the auditory brainstem implant, a prosthesis in which user outcomes are modest, we applied electric and infrared neural stimulation (INS) to the cochlear nucleus in a rat animal model. Electric stimulation evoked regions of neural activation in the inferior colliculus and short-latency, multipeaked auditory brainstem responses(More)
Simultaneous measurements of middle ear-conducted sound pressure in the cochlear vestibule P(V) and stapes velocity V(S) have been performed in only a few individuals from a few mammalian species. In this paper, simultaneous measurements of P(V) and V(S) in six chinchillas are reported, enabling computation of the middle ear pressure gain G(ME) (ratio of(More)
Optogenetics has become an important research tool and is being considered as the basis for several neural prostheses. However, few studies have applied optogenetics to the auditory brainstem. This study explored whether optical activation of the cochlear nucleus (CN) elicited responses in neurons in higher centers of the auditory pathway and whether it(More)
An important step to describe the effects of inner-ear impedance and pathologies on middle- and inner-ear mechanics is to quantify middle- and inner-ear function in the normal ear. We present middle-ear pressure gain G(MEP) and trans-cochlear-partition differential sound pressure DeltaP(CP) in chinchilla from 100 Hz to 30 kHz derived from measurements of(More)
We studied 138 glycopeptide-resistant enterococci (GRE) strains, consisting of 131 glycopeptide-resistant Enterococcus faecium (GREfm) and 7 glycopeptide-resistant Enterococcus faecalis (GREfs). The GREfm strains were resistant to penicillin, ampicillin, vancomycin, and teicoplanin, while the GREfs strains were only resistant to vancomycin and teicoplanin.(More)
Speech reception depends critically on temporal modulations in the amplitude envelope of the speech signal. Reverberation encountered in everyday environments can substantially attenuate these modulations. To assess the effect of reverberation on the neural coding of amplitude envelope, we recorded from single units in the inferior colliculus (IC) of(More)
Measurements of middle ear conducted sound pressure in the cochlear vestibule P V have been performed in only a few individuals from a few mammalian species. Simultaneous measurements of sound-induced stapes velocity V S are even more rare. We report simultaneous measurements of V S and P V in chinchillas. The V S measurements were performed using(More)
At present, we investigate the structure and the stability of NO(+)Arn (n ≤ 54) ionic clusters using analytical potential functions. The energy of these systems is described using additive potentials with VNO(+)Ar and VAr-Ar representing the pair potential interactions. To find the geometry of the lowest energy isomers of the NO(+)Arn clusters, we use the(More)