Michal Martinka

Learn More
This article reviews the responses of plant roots to elevated rhizosphere cadmium (Cd) concentrations. Cadmium enters plants from the soil solution. It traverses the root through symplasmic or apoplasmic pathways before entering the xylem and being translocated to the shoot. Leaf Cd concentrations in excess of 5-10 μg g(-1) dry matter are toxic to most(More)
BACKGROUND AND AIMS Merwilla plumbea is an important African medicinal plant. As the plants grow in soils contaminated with metals from mining activities, the danger of human intoxication exists. An experiment with plants exposed to cadmium (Cd) was performed to investigate the response of M. plumbea to this heavy metal, its uptake and translocation to(More)
BACKGROUND AND AIMS Cutting plant material is essential for observing internal structures and may be difficult for various reasons. Most fixation agents such as aldehydes, as well as embedding resins, do not allow subsequent use of fluorescent staining and make material too soft to make good-quality hand-sections. Moreover, cutting thin roots can be very(More)
Cardiovascular disease (CVD) is the leading cause of death in the Western world. Atherosclerosis is the most common pathological vascular change underlying CVD with hypercholesterolemia constituting a major risk factor. Heterozygous familial hypercholesterolemia (FH) is a common autosomal dominant disease with a prevalence of 1:500 in the general(More)
Cadmium uptake, tissue localization and structural changes induced at cellular level are essential to understand Cd tolerance in plants. In this study we have exposed plants of Pteris vittata to different concentrations of CdCl2 (0, 30, 60, 100 μM) to evaluate the tolerance of the fern to cadmium. Cadmium content determination and its histochemical(More)
BACKGROUND AND AIMS Apoplasmic barriers in plants fulfil important roles such as the control of apoplasmic movement of substances and the protection against invasion of pathogens. The aim of this study was to describe the development of apoplasmic barriers (Casparian bands and suberin lamellae) in endodermal cells of Arabidopsis thaliana primary root and(More)
BACKGROUND AND AIMS In the present study, we show that development of endodermis and exodermis is sensitively regulated by water accessibility. As cadmium (Cd) is known to induce xeromorphic effects in plants, maize roots were exposed also to Cd to understand the developmental process of suberin lamella deposition in response to a local Cd source. METHODS(More)
The E3 ligase Rad18 is a key regulator for the lesion bypass pathway, which plays an important role in genomic stability. However, the status of Rad18 expression in melanoma is not known. Using melanoma tissue microarray (TMA), we showed that nuclear Rad18 expression was upregulated in primary and metastatic melanoma compared to dysplastic nevi. Rad18(More)
The seeds of Zea mays L. cv. KWS were exposed to low-temperature plasma (LTP) by using Diffuse Coplanar Surface Barrier Discharge (DCSBD) for 60 and 120 seconds respectively. Growth parameters, anatomy of roots and activity of some enzymes (CAT, G-POX, SOD and DHO) isolated from roots grown from the seeds treated by LTP were evaluated. Our results indicate(More)
Background and Aims Deposition of silica in plant cell walls improves their mechanical properties and helps plants to withstand various stress conditions. Its mechanism is still not understood and silica-cell wall interactions are elusive. The objective of this study was to investigate the effect of silica deposition on the development and structure of(More)