Michal M. Okoniewski

Learn More
The efficacy of emerging microwave breast cancer detection and treatment techniques will depend, in part, on the dielectric properties of normal breast tissue. However, knowledge of these properties at microwave frequencies has been limited due to gaps and discrepancies in previously reported small-scale studies. To address these issues, we experimentally(More)
The development of microwave breast cancer detection and treatment techniques has been driven by reports of substantial contrast in the dielectric properties of malignant and normal breast tissues. However, definitive knowledge of the dielectric properties of normal and diseased breast tissues at microwave frequencies has been limited by gaps and(More)
The continuing advances in the field of electrical engineering, in areas like cellular communications, fiber optics, mobile and multi-gigahertz electronics have necessitated a computer-assisted design approach to the complex electromagnetic interactions and problems that arise. Finite-Difference Time-Domain (FDTD) Analysis is a very powerful tool for the(More)
Microwave breast imaging techniques involve collecting measurements from a breast that is positioned in a scanner. While the patient interface typically includes a hole through which the breast is placed when the patient lies in the prone position, the exact location and shape of breast are not known. In this paper, we explore the addition of a laser sensor(More)