Learn More
In vivo effects of transcranial direct current stimulation (tDCS) have attracted much attention nowadays as this area of research spreads to both the motor and cognitive domains. The common assumption is that the anode electrode causes an enhancement of cortical excitability during stimulation, which then lasts for a few minutes thereafter, while the(More)
Previous studies have reported an interaction between visual field (VF) and word length such that word recognition is affected more by length in the left VF (LVF) than in the right VF (RVF). A reanalysis showed that the previously reported effects of length were confounded with orthographic neighborhood size (N). In three experiments we manipulated length(More)
Cognitive training is an effective tool to improve a variety of cognitive functions, and a small number of studies have now shown that brain stimulation accompanying these training protocols can enhance their effects. In the domain of behavioral inhibition, little is known about how training can affect this skill. As for transcranial direct current(More)
A common feature of human existence is the ability to reverse decisions after they are made but before they are implemented. This cognitive control process, termed response inhibition, refers to the ability to inhibit an action once initiated and has been localized to the right inferior frontal gyrus (rIFG) based on functional imaging and brain lesion(More)
A new theory of visual word recognition is based on the fact that the fovea is split in humans. When a reader fixates the center of a written word, the initial letters of the word that are to the left of fixation are projected first to the right cerebral hemisphere (RH) while the final letters are projected to the left cerebral hemisphere (LH). This paper(More)
The split-fovea theory proposes that visual word recognition is mediated by the splitting of the foveal image, with letters to the left of fixation projected to the right hemisphere (RH) and letters to the right of fixation projected to the left hemisphere (LH). We applied repetitive transcranial magnetic stimulation (rTMS) over the left and right occipital(More)
Abstract Previous research suggests that the right hemisphere (RH) may contribute uniquely to the processing of metaphoric language. However, causal relationships between local brain activity in the RH and metaphors comprehension were never established. In addition, most studies have focused on familiar metaphoric expressions which might be processed(More)
A dual-route model for the recognition of written words is hypothesised. The model postulates that the two cerebral hemispheres differ in their sensitivity to the visual format of verbal stimuli. Such stimuli may be 'standard', that is in Standard Visual Format (SVF), or "non-standard", i.e. in non-standard Visual Format (NSVF). In the left hemisphere (LH),(More)
The patterns of activation invoked in the two cerebral hemispheres by written words may be different. Two lexical decision experiments investigated several aspects of such activation patterns. Experiment 1 tested phonological and orthographic priming in the hemispheres, manipulating two levels of phonological and two levels of orthographic similarity.(More)
A fundamental question in visual perception is whether the representation of the fovea is split at the midline between the two hemispheres, or bilaterally represented by overlapping projections of the fovea in each hemisphere. Here we examine psychophysical, anatomical, neuropsychological and brain stimulation experiments that have addressed this question,(More)