Learn More
We give deterministic distributed algorithms that given δ > 0 find in a planar graph G, (1 ± δ)-approximations of a maximum independent set, a maximum matching, and a minimum dominating set. The algorithms run in O(log * |G|) rounds. In addition, we prove that no faster deterministic approximation is possible and show that if randomization is allowed it is(More)
1 Introduction One of the fascinating questions of computer science is whether and to what extent randomization increases the power of algorithmic procedures. It is well-known that, in general, randomization makes distributed algorithms more powerful, for there are examples of basic coordination tasks in asynchronous systems which cannot be solved by(More)
We present a distributed approximation algorithm that computes in every graph G a matching M of size at least 2 3 β(G), where β(G) is the size of a maximum matching in G. The algorithm runs in O(log 4 |V (G)|) rounds in the synchronous, message passing model of computation and matches the best known asymptotic complexity for computing a maximal matching in(More)
We study distributed algorithms for three graph-theoretic problems in weighted trees and weighted planar graphs. For trees, we present an efficient deterministic distributed algorithm which finds an almost exact approximation of a maximum-weight matching. In addition, in the case of trees, we show how to approximately solve the minimum-weight dominating set(More)
We will give distributed approximation schemes for the maximum matching problem and the minimum connected dominating set problem in unit-disk graphs. The algorithms are deterministic, run in a poly-logarithmic number of rounds in the message passing model and the approximation error can be made O(1/ log k |G|) where |G| is the order of the graph and k is a(More)
We give efficient deterministic distributed algorithms which given a graph G from a proper minor-closed family C find an approximation of a minimum dominating set in G and a minimum connected dominating set in G. The algorithms are deterministic and run in a poly-logarithmic number of rounds. The approximation accomplished differs from an optimal by a(More)