Michal Balazia

  • Citations Per Year
Learn More
In the field of gait recognition from motion capture data, designing human-interpretable gait features is a common practice of many fellow researchers. To refrain from ad-hoc schemes and to find maximally discriminative features we may need to explore beyond the limits of human interpretability. This paper contributes to the state-of-the-art with a machine(More)
MoCap-based human identification, as a pattern recognition discipline, can be optimized using a machine learning approach. Yet in some applications such as video surveillance new identities can appear on the fly and labeled data for all encountered people may not always be available. This work introduces the concept of learning walker-independent gait(More)
As a contribution to reproducible research, this paper presents a framework and a database to improve the development, evaluation and comparison of methods for gait recognition from motion capture (MoCap) data. The evaluation framework provides implementation details and source codes of state-of-the-art human-interpretable geometric features as well as our(More)
Most contribution to the field of structure-based human gait recognition has been done through design of extraordinary gait features. Many research groups that address this topic introduce a unique combination of gait features, select a couple of well-known object classifiers, and test some variations of their methods on their custom Kinect databases. For a(More)
Gait recognition from motion capture data, as a pattern classification discipline, can be improved by the use of machine learning. This paper contributes to the state-of-the-art with a statistical approach for extracting robust gait features directly from raw data by a modification of Linear Discriminant Analysis with Maximum Margin Criterion. Experiments(More)
This work offers a design of a video surveillance system based on a soft biometric – gait identification from MoCap data. The main focus is on two substantial issues of the video surveillance scenario: (1) the walkers do not cooperate in providing learning data to establish their identities and (2) the data are often noisy or incomplete. We show that only a(More)
  • 1