Michaela Yanko

Learn More
The genes that encode thioredoxin and thioredoxin reductase of Streptomyces clavuligerus were cloned, and their DNA sequences were determined. Previously, we showed that S. clavuligerus possesses a disulfide reductase with broad substrate specificity that biochemically resembles the thioredoxin oxidoreductase system and may play a role in the biosynthesis(More)
Morphogenesis in the yeast Saccharomyes cerevisiae consists primarily of bud formation. Certain cell division cycle (CDC) genes, CDC3, CDC10, CDC11, CDC12, are known to be involved in events critical to the pattern of bud growth and the completion of cytokinesis. Their products are associated with the formation of a ring of neck filaments that forms at the(More)
Genes encoding two ribonucleotide reductases (RNRs) were identified in members of the genus Streptomyces. One gene, nrdJ, encoded an oligomeric protein comprising four identical subunits each with a molecular mass of approximately 108 kDa. The activity of this protein depended on the presence of 5'-deoxyadenosylcobalamine (coenzyme B12), establishing it as(More)
Isopenicillin N synthase is a key enzyme in the biosynthesis of penicillin and cephalosporin antibiotics, catalyzing the oxidative ring closure of δ-(L-α-aminoadipoyl)-L-cysteinyl-D-valine to form isopenicillin N. Recent advances in our understanding of the unique chemistry of this enzyme have come through the combined application of spectroscopic,(More)
Candida albicans is an opportunistic pathogen which may give rise to superficial and systemic infections. In the present study, C. albicans adhesion was studied by expression of C. albicans DNA sequences encoding adhesion functions in a nonadherent strain of Saccharomyces cerevisiae. Adherent transformant cells of S. cerevisiae harbouring a C. albicans(More)
Isopenicillin N synthase (IPNS) is a non-heme ferrous iron-dependent oxygenase that catalyzes the ring closure of delta-(L-alpha-aminoadipoyl)-L-cysteinyl-D-valine (ACV) to form isopenicillin N. Spectroscopic studies and the crystal structure of IPNS show that the iron atom in the active species is coordinated to two histidine and one aspartic acid(More)
  • 1