Michaela Thoss

Learn More
There is increasing interest to determine the relative importance of non-additive genetic benefits as opposed to additive ones for the evolution of mating preferences and maintenance of genetic variation in sexual ornaments. The 'good-genes-as-heterozygosity' hypothesis predicts that females should prefer to mate with more heterozygous males to gain more(More)
We investigated how heterozygosity at the major histocompatibility complex (MHC) affects fitness in wild-derived (F2) house mice (Mus musculus musculus). To compare and control for potential confounding effects from close inbreeding and genome-wide heterozygosity, we used mice that were systematically outbred. We assessed how heterozygosity at MHC and(More)
Male house mice produce large quantities of major urinary proteins (MUPs), which function to bind and transport volatile pheromones, though they may also function as scavengers that bind and excrete toxic compounds ('toxic waste hypothesis'). In this study, we demonstrate the presence of an industrial chemical, 2,4-di-tert-butylphenol (DTBP), in the urine(More)
Major urinary proteins (MUPs) are highly homologous proteoforms that function in binding, transporting and releasing pheromones in house mice. The main analytical challenge for studying variation in MUPs, even for state-of-the-art proteomics techniques, is their high degree of amino acid sequence homology. In this study we used unique peptides for(More)
It is often suggested that mate choice enhances offspring immune resistance to infectious diseases. To test this hypothesis, we conducted a study with wild-derived house mice (Mus musculus musculus) in which females were experimentally mated either with their preferred or non-preferred male, and their offspring were infected with a mouse pathogen,(More)
Reinforcement is the process by which prezygotic isolation is strengthened as a response to selection against hybridization. Most empirical support for reinforcement comes from the observation of its possible phenotypic signature: an accentuated degree of prezygotic isolation in the hybrid zone as compared to allopatry. Here, we implemented a novel approach(More)
Multiple mating is common in many species, but it is unclear whether multiple paternity enhances offspring genetic diversity or fitness. We conducted a survey on wild house mice (Mus musculus musculus), and we found that in 73 pregnant females, 29% of litters had multiple sires, which is remarkably similar to the 23-26% found in feral populations of Mus(More)
House mice (Mus musculus) produce a variable number of major urinary proteins (MUPs), and studies suggest that each individual produces a unique MUP profile that provides a distinctive odor signature controlling individual and kin recognition. This 'barcode hypothesis' requires that MUP urinary profiles show high individual variability within populations(More)
1 Konrad Lorenz Institute of Ethology, Department of Integrative Biology and Evolution, University of Veterinary Medicine Vienna, Savoyenstrasse 1 A, A-1160 Vienna, Austria 2 Institute of Evolutionary Biology and Environmental Studies, University of Zürich, Winterthurerstrasse 190, CH-8057, Zürich, Switzerland 3 School of Biological Sciences, Flinders(More)
Major urinary proteins (MUPs) are often suggested to be highly polymorphic, and thereby provide unique chemical signatures used for individual and genetic kin recognition; however, studies on MUP variability have been lacking. We surveyed populations of wild house mice (Mus musculus musculus), and examined variation of MUP genes and proteins. We sequenced(More)