Michaela Scherr

Learn More
In the past few years, the discovery of RNA-mediated gene silencing mechanisms, like RNA interference (RNAi), has revolutionized our understanding of eukaryotic gene expression. These mechanisms are activated by double-stranded RNA (dsRNA) and mediate gene silencing either by inducing the sequence-specific degradation of complementary mRNA or by inhibiting(More)
Micro RNAs (miRNA) regulate gene expression by hybridization and recruitment of multi-protein complexes to complementary mRNA target sequences. miRNA function can transiently be antagonized by antagomirs-chemically modified oligonucleotides complementary to individual miRNAs. Here, we describe the induction of stable loss-of-function phenotypes for specific(More)
The use of antisense oligodeoxyribonucleotides (ODN) or ribozymes to specifically suppress gene expression is simple in concept and relies on efficient binding of the antisense strand to the target RNA. Although the identification of target sites accessible to base pairing is gradually being overcome by different techniques, it remains a major problem in(More)
Although targeting the BCR-ABL tyrosine kinase activity by imatinib mesylate has rapidly become first-line therapy in chronic myeloid leukemia (CML), drug resistance suggests that combination therapy directed to a complementing target may significantly improve treatment results. To identify such potential targets, we used lentivirus-mediated RNA(More)
Despite advances in allogeneic stem cell transplantation, BCR-ABL-positive acute lymphoblastic leukaemia (ALL) remains a high-risk disease, necessitating the development of novel treatment strategies. As the known oncomir, miR-17~92, is regulated by BCR-ABL fusion in chronic myeloid leukaemia, we investigated its role in BCR-ABL translocated ALL.(More)
BACKGROUND Translocations of the Mixed Lineage Leukemia (MLL) gene occur in a subset (5%) of acute myeloid leukemias (AML), and in mixed phenotype acute leukemias in infancy - a disease with extremely poor prognosis. Animal model systems show that MLL gain of function mutations may contribute to leukemogenesis. Wild-type (wt) MLL possesses histone(More)
Deregulation of Ras/ERK signaling in myeloid leukemias makes this pathway an interesting target for drug development. Myeloid leukemia cell lines were screened for idarubicin-induced apoptosis, cell-cycle progression, cell-cycle-dependent MAP kinase kinase (MEK-1/2) activation, and Top2 expression. Cell-cycle-dependent activation of MEK/ERK signaling was(More)
This study reports a lentiviral gene transfer protocol for efficient transduction of adult human peripheral blood (PB)-derived CD34+ NOD/SCID-repopulating cells (SRCs) using vesicular stomatitis virus-G protein (VSV-G)-pseudotyped lentiviruses encoding for enhanced green fluorescence protein (eGFP). Lentiviral stocks were concentrated by anion exchange(More)
BACKGROUND Homeodomain proteins control fundamental cellular processes in development and in cancer if deregulated. Three members of the NK-like subfamily of homeobox genes (NKLs), TLX1, TLX3 and NKX2-5, are implicated in T-cell acute lymphoblastic leukemia (T-ALL). They are activated by particular chromosomal aberrations. However, their precise function in(More)
BACKGROUND NK- and T-cells are closely related lymphocytes, originating from the same early progenitor cells during hematopoiesis. In these differentiation processes deregulation of developmental genes may contribute to leukemogenesis. Here, we compared expression profiles of NK- and T-cell lines for identification of aberrantly expressed genes in T-cell(More)