Michaela Nebel

Learn More
This article reviews recent work involving the application of scanning electrochemical microscopy (SECM) to the study of individual cultured living cells, with an emphasis on topographical and functional imaging of neuronal and secretory cells of the nervous and endocrine system. The basic principles of biological SECM and associated negative(More)
Multidimensional shearforce-based constant-distance mode scanning electrochemical microscopy (4D SF/CD-SECM) was utilized for the investigation of the activity distribution of oxygen reduction catalysts. Carbon-supported Pt model catalyst powders have been immobilized in recessed microelectrodes and compared to a spot preparation technique. Microcavities(More)
The authors report on the fabrication of a thermoresponsive biosensor for the amperometric detection of glucose. Screen printed electrodes with heatable gold working electrodes were modified by a thermoresponsive statistical copolymer [polymer I: poly(ω-ethoxytriethylenglycol methacrylate-co-3-(N,N-dimethyl-N-2-methacryloyloxyethyl ammonio)(More)
4D shearforce-based constant-distance mode scanning electrochemical microscopy (4D SF/CD-SECM) is designed to assess SECM tip currents at several but constant distances to the sample topography at each point of the x,y-scanning grid. The distance dependent signal is achieved by a shearforce interaction between the in-resonance vibrating SECM tip and the(More)
Cavity microelectrodes were used as a binder-free platform to evaluate oxygen evolution reaction (OER) electrocatalysts with respect to gas bubble formation and departure. Electrochemical noise measurements were performed by using RuO2 as a benchmark catalyst and the perovskite La0.58 Sr0.4 Fe0.8 Co0.2 O3 as a non-noble metal OER catalyst with lower(More)
In recent years, scanning electrochemical microscopy (SECM) has become an important tool in topography and activity studies on single live cells. The used analytical probes ("SECM tips") are voltammetric micro- or nanoelectrodes. The tips may be tracked across a live cell in constant-height or constant-distance mode, while kept at potentials that enable(More)
The detection of cellular respiration activity is important for the assessment of the status of a biological cell. Due to its non-invasive character and high spatial resolution scanning electrochemical microscopy (SECM) is a powerful tool for single cell measurements. Common limitations of respiration studies performed by SECM are discussed and strategies(More)
Microwave induced activation of electrochemical processes at microelectrodes (ca. 0.8 microm diameter) immersed in aqueous electrolyte media is shown to be driven by (i) continuous stable cavitation (giving rise to Faradaic current enhancements by up to three orders of magnitude) and (ii) transient discharge cavitation on the micros timescale (giving rise(More)
In pursuance of efficient tools for the local analysis and characterization of novel photoelectrocatalytic materials, several SECM-based techniques have been developed, aiming on the combined benefit of a local irradiation of the analyzed sample and a microelectrode probe for the localized electrochemical analysis of the surface. We present the development(More)
  • 1