Michaela Müller-McNicoll

Learn More
The SR proteins comprise a family of essential, structurally related RNA binding proteins. The complexity of their RNA targets and specificity of RNA recognition in vivo is not well understood. Here we use iCLIP to globally analyze and compare the RNA binding properties of two SR proteins, SRSF3 and SRSF4, in murine cells. SRSF3 and SRSF4 binding sites(More)
mRNA is packaged into ribonucleoprotein particles called mRNPs. A multitude of RNA-binding proteins as well as a host of associated proteins participate in the fate of mRNA from transcription and processing in the nucleus to translation and decay in the cytoplasm. Methodological innovations in cell biology and genome-wide high-throughput approaches have(More)
9 and histone transcripts, and controls their transcription, 3′-end processing and stability15,16. ARS2 was previously copurified with the CBC, but it was unclear whether the interaction was direct2,15,16. Using quantitative in vivo approaches and in vitro reconstitution, Hallais et al.13 showed convincingly that the CBC is part of two distinct(More)
SR proteins function in nuclear pre-mRNA processing, mRNA export, and translation. To investigate their cellular dynamics, we developed a quantitative assay, which detects differences in nucleocytoplasmic shuttling among seven canonical SR protein family members. As expected, SRSF2 and SRSF5 shuttle poorly in HeLa cells but surprisingly display considerable(More)
The core body temperature of all mammals oscillates with the time of the day. However, direct molecular consequences of small, physiological changes in body temperature remain largely elusive. Here we show that body temperature cycles drive rhythmic SR protein phosphorylation to control an alternative splicing (AS) program. A temperature change of 1°C is(More)
We previously reported that Short Interspersed Degenerate Retroposons of the SIDER2 subfamily predominantly located within 3' untranslated regions (UTRs) of Leishmania transcripts promote rapid turnover that is initiated by endonucleolytic cleavage. Here, we investigated whether SIDER2-mediated mRNA decay is linked to translation. We show that preventing(More)
5-Lipoxygenase (5-LO) catalyzes the initial two steps of the conversion of arachidonic acid to leukotrienes which represent a group of pro-inflammatory lipid mediators involved in immune defense reactions as well as inflammation, allergy and cancer. Transforming growth factor-β (TGFβ) and calcitriol strongly upregulate 5-LO expression during myeloid cell(More)
Regulated mRNA turnover is a highly important process in the control of gene expression in Leishmania and related trypanosomatid protozoa, as these organisms lack control at the level of transcription initiation. A large number of Leishmania transcripts harbor in their 3'UTRs two phylogenetically distinct subfamilies of extinct Short Interspersed DEgenerate(More)
RNA binding proteins (RBPs) regulate the lives of all RNAs from transcription, processing, and function to decay. How RNA-protein interactions change over time and space to support these roles is poorly understood. Towards this end, we sought to determine how two SR proteins-SRSF3 and SRSF7, regulators of pre-mRNA splicing, nuclear export and(More)
Nuclear retention of incompletely spliced or mature mRNAs emerges as a novel, previously underappreciated layer of gene regulation, which enables the cell to rapidly respond to stress, viral infection, differentiation cues or changing environmental conditions. Focusing on mammalian cells, we discuss recent insights into the mechanisms and functions of(More)