Michaela Knapp-Mohammady

Learn More
When ionized by electrospray from acidic solutions, the tripeptides Pro-His-Xaa (Xaa = Gly, Ala, Leu) form abundant doubly-protonated ions, [M + 2H]2+. Collision-induced dissociation (CID) of these doubly-protonated species results, in part, in formation of b(2)(2+) ions, which fragment further by loss of CO to form a(2)(2+) ions; the latter fragment by(More)
The MS(n) spectra of the [M + H](+) and b(5) peaks derived from the peptides HAAAAA, AHAAAA, AAHAAA, AAAHAA, and AAAAHA have been measured, as have the spectra of the b(4) ions derived from the first four peptides. The MS(2) spectra of the [M + H](+) ions show a substantial series of b(n) ions with enhanced cleavage at the amide bond C-terminal to His and(More)
Microcontact printing (μCP) of proteins is widely used for biosensors and cell biology but is constrained to printing proteins adsorbed to a low free energy, hydrophobic surface to a high free energy, hydrophilic surface. This strongly limits μCP as harsh chemical treatments are required to form a high energy surface. Here, we introduce humidified μCP(More)
The recently proposed close-packed motif for collagen is investigated using first principles semi-empirical wave function theory and Kohn-Sham density functional theory. Under these refinements the close-packed motif is shown to be stable. For the case of the 7/2 motif a similar stability exists. The electronic circular dichroism of the close-packed model(More)
Adiabatic electron affinities (AEA) and structural perturbations due to addition of an excess electron to each of the neutral guanine-cytosine (G-C), adenine-thymine (A-T), and hypoxanthine-cytosine (HX-C) base pairs were studied using the self-consistent charge, density functional tight-binding (SCC-DFTB-D) method, augmented by the empirical London(More)
The Division of Molecular Biophysics I examines molecular and genomic structure problems with the help of bio-physical and computer scientific methods and develops computer simulation methods for their modelling on the genomic, molecular and electronic levels. The German EMBnet node-GENIUSnet-is a biocom-puting facility for German scientists providing(More)
Retinal proteins are excellent systems for understanding essential physiological processes such as signal transduction and ion pumping. Although the conjugated polyene system of the retinal chromophore is best described with quantum mechanics, simulations of the long-timescale dynamics of a retinal protein in its physiological, flexible, lipid-membrane(More)
  • 1