Michael Zengerle

Learn More
The Bromo- and Extra-Terminal (BET) proteins BRD2, BRD3, and BRD4 play important roles in transcriptional regulation, epigenetics, and cancer and are the targets of pan-BET selective bromodomain inhibitor JQ1. However, the lack of intra-BET selectivity limits the scope of current inhibitors as probes for target validation and could lead to unwanted side(More)
Small molecules are useful tools for probing the biological function and therapeutic potential of individual proteins, but achieving selectivity is challenging when the target protein shares structural domains with other proteins. The Bromo and Extra-Terminal (BET) proteins have attracted interest because of their roles in transcriptional regulation,(More)
We describe new synthetic routes developed toward a range of substituted analogues of bromo and extra-terminal (BET) bromodomain inhibitors I-BET762/JQ1 based on the triazolo-benzodiazepine scaffold. These new routes allow for the derivatization of the methoxyphenyl and chlorophenyl rings, in addition to the diazepine ternary center and the side chain(More)
Inducing macromolecular interactions with small molecules to activate cellular signaling is a challenging goal. PROTACs (proteolysis-targeting chimeras) are bifunctional molecules that recruit a target protein in proximity to an E3 ubiquitin ligase to trigger protein degradation. Structural elucidation of the key ternary ligase-PROTAC-target species and its(More)
Chemical genetics is the use of biologically active small molecules (chemical probes) to investigate the functions of gene products, through the modulation of protein activity. Recent years have seen significant progress in the application of chemical genetics to study epigenetics, following the development of new chemical probes, a growing appreciation of(More)
The design of proteolysis-targeting chimeras (PROTACs) is a powerful small-molecule approach for inducing protein degradation. PROTACs conjugate a target warhead to an E3 ubiquitin ligase ligand via a linker. Here we examined the impact of derivatizing two different BET bromodomain inhibitors, triazolodiazepine JQ1 and the more potent tetrahydroquinoline(More)
Pluripotent stem cells (PSCs) hold great clinical potential, as they possess the capacity to differentiate into fully specialised tissues such as pancreas, liver, neurons and cardiac muscle. However, the molecular mechanisms that coordinate pluripotent exit with lineage specification remain poorly understood. To address this question, we perform a small(More)
  • 1