Learn More
Isolated dystonia is a disorder characterized by involuntary twisting postures arising from sustained muscle contractions. Although autosomal-dominant mutations in TOR1A, THAP1, and GNAL have been found in some cases, the molecular mechanisms underlying isolated dystonia are largely unknown. In addition, although emphasis has been placed on dominant(More)
BACKGROUND Dystonia is clinically and genetically heterogeneous. Despite being a first-line testing tool for heterogeneous inherited disorders, whole-exome sequencing has not yet been evaluated in dystonia diagnostics. We set up a pilot study to address the yield of whole-exome sequencing for early-onset generalized dystonia, a disease subtype enriched for(More)
Niemann-Pick type C (NPC) disease is a rare autosomal-recessively inherited lysosomal storage disorder caused by mutations in NPC1 (95%) or NPC2. Given the highly variable phenotype, diagnosis is challenging and particularly late-onset forms with predominantly neuropsychiatric presentations are likely underdiagnosed. Pathophysiologically, genetic(More)
We present an optimized method for compound-specific stable carbon isotope (delta(13)C) analysis of n-alkanes. For sample preparation, the traditionally used Soxhlet extraction was replaced by accelerated solvent extraction (ASE). delta(13)C values of individual n-alkanes--measured using gas chromatography-combustion-isotope ratio mass spectrometry(More)
BACKGROUND Rare autosomal-dominant mutations in ANO3 and GNAL have been recently shown to represent novel genetic factors underlying primary torsion dystonia (PTD) with predominantly craniocervical involvement. METHODS We used high-resolution melting to screen all exons of ANO3 and GNAL for rare sequence variants in a population of 342 German individuals(More)
Recessive DYT16 dystonia associated with mutations in PRKRA has until now been reported only in seven Brazilian patients. The aim of this study was to elucidate the genetic cause underlying disease in a Polish family with autosomal-recessive, early-onset generalized dystonia and slight parkinsonism, and to explore further the role of PRKRA in a dystonia(More)
RATIONALE The oxygen isotope ratio (δ(18)O) of carbohydrates derived from animals, plants, sediments, and soils provides important information about biochemical and physiological processes, past environmental conditions, and geographical origins, which are otherwise not available. Nowadays, δ(18)O analyses are often performed on carbohydrate bulk material,(More)
Although gas chromatography-pyrolysis-isotope ratio mass spectrometry (GC-Py-IRMS) has allowed us to make online compound-specific delta18O measurements for about the last ten years, this technique has hardly been applied. We tested different pyrolysis reactor designs using standards (vanillin, ethylvanillin, a fatty acid methyl ester and alkanes) in order(More)
Although the instrumental coupling of gas chromatography-pyrolysis-isotope ratio mass spectrometry (GC-Py-IRMS) for compound-specific δ(18)O analysis has been commercially available for more than a decade, this method has been hardly applied so far. Here we present the first GC-Py-IRMS δ(18)O results for trimethylsilyl-derivatives of plant sap-relevant(More)