Learn More
DNA sequence copy number is the number of copies of DNA at a region of a genome. Cancer progression often involves alterations in DNA copy number. Newly developed microarray technologies enable simultaneous measurement of copy number at thousands of sites in a genome. We have developed a modification of binary segmentation, which we call circular binary(More)
Exome sequencing of 343 families, each with a single child on the autism spectrum and at least one unaffected sibling, reveal de novo small indels and point substitutions, which come mostly from the paternal line in an age-dependent manner. We do not see significantly greater numbers of de novo missense mutations in affected versus unaffected children, but(More)
Autism is a genetically complex neurodevelopmental syndrome in which language deficits are a core feature. We describe results from two complimentary approaches used to identify risk variants on chromosome 7 that likely contribute to the etiology of autism. A two-stage association study tested 2758 SNPs across a 10 Mb 7q35 language-related autism QTL in(More)
We have developed a methodology we call ROMA (representational oligonucleotide microarray analysis), for the detection of the genomic aberrations in cancer and normal humans. By arraying oligonucleotide probes designed from the human genome sequence, and hybridizing with "representations" from cancer and normal cells, we detect regions of the genome with(More)
Genomic analysis provides insights into the role of copy number variation in disease, but most methods are not designed to resolve mixed populations of cells. In tumours, where genetic heterogeneity is common, very important information may be lost that would be useful for reconstructing evolutionary history. Here we show that with flow-sorted nuclei, whole(More)
To explore the genetic contribution to autistic spectrum disorders (ASDs), we have studied genomic copy-number variation in a large cohort of families with a single affected child and at least one unaffected sibling. We confirm a major contribution from de novo deletions and duplications but also find evidence of a role for inherited "ultrarare"(More)
The heterogeneity and instability of human tumors hamper straightforward identification of cancer-causing mutations through genomic approaches alone. Herein we describe a mouse model of liver cancer initiated from progenitor cells harboring defined cancer-predisposing lesions. Genome-wide analyses of tumors in this mouse model and in human hepatocellular(More)
Cancers are highly heterogeneous and contain many passenger and driver mutations. To functionally identify tumor suppressor genes relevant to human cancer, we compiled pools of short hairpin RNAs (shRNAs) targeting the mouse orthologs of genes recurrently deleted in a series of human hepatocellular carcinomas and tested their ability to promote(More)
Different species, populations and individuals vary considerably in the copy number of discrete segments of their genomes. The manner and frequency with which these genetic differences arise over generational time is not well understood. Taking advantage of divergence among lineages sharing a recent common ancestry, we have conducted a genome-wide analysis(More)
We have developed a tool for rapidly determining the number of exact matches of any word within large, internally repetitive genomes or sets of genomes. Thus we can readily annotate any sequence, including the entire human genome, with the counts of its constituent words. We create a Burrows-Wheeler transform of the genome, which together with auxiliary(More)