Michael Wallisch

Learn More
A replication fork barrier (RFB) at the 3' end of eukaryotic ribosomal RNA genes blocks bidirectional fork progression and limits DNA replication to the same direction as transcription. We have reproduced the RFB in vitro in HeLa cell extracts using 3' terminal murine rDNA fused to an SV40 origin-based vector. The RFB is polar and modularly organized,(More)
This study uses a neonatal guinea pig model to compare the effects of in utero methadone or morphine exposure upon breathing control. We hypothesize that in utero methadone exposure will result in similar respiratory disturbances to those seen in morphine exposed neonates, but that the onset will be slower and the duration longer, due to methadone's longer(More)
Respiratory depression is the main obstacle for the safe administration of morphine for acute pain after injury. Due to this complication, new delivery methods are needed to insure that safe and effective doses of opioid analgesics are administered during emergencies. A depot formulation containing a naloxone pro-drug was designed to release the antidote(More)
Accurate monitoring of respiration is often needed for neurophysiological studies, as either a dependent experimental variable or an indicator of physiological state. Current options for respiratory monitoring of animals held in a stereotaxic frame include EMG recordings, pneumotachograph measurements, inductance-plethysmography, whole-body plethysmography(More)
Our laboratory studies the effects of in utero opioid exposure on the neonate. In this work we test the effects of chronic in utero exposure to buprenorphine on the neonate. Buprenorphine is a promising candidate for treatment of opioid addiction during pregnancy and it has been suggested to decrease the neonatal abstinence syndrome in human infants. In our(More)
Methadone is administered as a racemic mixture, although its analgesic and respiratory effects are attributed to R-isomer activity at the mu opioid receptor (MOP). Recently, we observed a four-fold increase in inspiratory time in 3-day-old guinea pigs following an injection of racemic methadone. We hypothesized that this effect was due to augmentation of(More)
Chronic opioid treatment leads to agonist-specific effects at the mu opioid receptor. The molecular mechanisms resulting from chronic opioid exposure include desensitization, internalization and down-regulation of membrane-bound mu opioid receptors (MOP). The purpose of this study was to compare the cellular regulation of guinea pig, human and rat MOP(More)
  • 1