Learn More
Amyloid-beta peptide is elevated in the brains of patients with Alzheimer disease and is believed to be causative in the disease process. Amyloid-beta reduces glutamatergic transmission and inhibits synaptic plasticity, although the underlying mechanisms are unknown. We found that application of amyloid-beta promoted endocytosis of NMDA receptors in(More)
N-methyl-D-aspartate receptors (NMDARs) mediate ischemic brain damage but also mediate essential neuronal excitation. To treat stroke without blocking NMDARs, we transduced neurons with peptides that disrupted the interaction of NMDARs with the postsynaptic density protein PSD-95. This procedure dissociated NMDARs from downstream neurotoxic signaling(More)
NMDA (N-methyl-d-aspartate) receptors (NMDARs) are a principal subtype of excitatory ligand-gated ion channel with prominent roles in physiological and disease processes in the central nervous system. Recognition that glycine potentiates NMDAR-mediated currents as well as being a requisite co-agonist of the NMDAR subtype of 'glutamate' receptor profoundly(More)
The N-methyl-D-aspartate (NMDA) receptor mediates synaptic transmission and plasticity in the central nervous system (CNS) and is regulated by tyrosine phosphorylation. In membrane patches excised from mammalian central neurons, the endogenous tyrosine kinase Src was shown to regulate the activity of NMDA channels. The action of Src required a sequence(More)
Microglia in the dorsal horn of the spinal cord are increasingly recognized as being crucial in the pathogenesis of pain hypersensitivity after injury to a peripheral nerve. It is known that P2X4 purinoceptors (P2X4Rs) cause the release of brain-derived neurotrophic factor (BDNF) from microglia, which is necessary for maintaining pain hypersensitivity after(More)
Long-term potentiation (LTP) is an activity-dependent strengthening of synaptic efficacy that is considered to be a model of learning and memory. Protein tyrosine phosphorylation is necessary to induce LTP. Here, induction of LTP in CA1 pyramidal cells of rats was prevented by blocking the tyrosine kinase Src, and Src activity was increased by stimulation(More)
ATP has been proposed as a possible chemical mediator of synaptic transmission in the spinal dorsal horn on the basis that it is released in dorsal horn synaptosomes in a Ca(2+)-dependent manner and that its effects mimic those of synaptic inputs to dorsal horn neurons. In the present study we examined the actions of ATP on neurons and glia in cell culture(More)
1. Astrocytes from the dorsal spinal cord express P2-purinoceptors which, when stimulated, produce a rise in the intracellular level of free Ca2+ ([Ca2+]i). Previously we have found that the P2Y class of receptor is expressed by nearly all astrocytes from the dorsal horn. To determine whether other metabotropic P2-purinoceptor classes are also present, in(More)