Michael W. Pennington

Learn More
We have used a structure-based design strategy to transform the polypeptide toxin charybdotoxin, which blocks several voltage-gated and Ca(2+)-activated K(+) channels, into a selective inhibitor. As a model system, we chose two channels in T-lymphocytes, the voltage-gated channel Kv1.3 and the Ca(2+)-activated channel IKCa1. Homology models of both channels(More)
The structurally defined sea anemone peptide toxins ShK and BgK potently block the intermediate conductance, Ca(2+)-activated potassium channel IKCa1, a well recognized therapeutic target present in erythrocytes, human T-lymphocytes, and the colon. The well characterized voltage-gated Kv1.3 channel in human T-lymphocytes is also blocked by both peptides,(More)
OBJECTIVE Potassium (K(+)) channels on immune cells have gained attention recently as promising targets of therapy for immune-mediated neurological diseases such as multiple sclerosis (MS). We examined K(+) channels on dendritic cells (DCs), which infiltrate the brain in MS and may impact disease course. METHODS We identified K(+) channels on(More)
Effector memory T (Tem) cells are essential mediators of autoimmune disease and delayed-type hypersensitivity (DTH), a convenient model for two-photon imaging of Tem cell participation in an inflammatory response. Shortly (3 hr) after entry into antigen-primed ear tissue, Tem cells stably attached to antigen-bearing antigen-presenting cells (APCs). After 24(More)
Bass hepcidin was purified from the gill of hybrid striped bass (Morone chrysops x Morone saxatilis) based on antimicrobial activity against Escherichia coli. This 21-amino acid peptide has 8 cysteines engaged in 4 disulfide bonds and is very similar to human hepcidin, an antimicrobial peptide with iron regulatory properties. To gain insight into potential(More)
Peptide toxins found in a wide array of venoms block K(+) channels, causing profound physiological and pathological effects. Here we describe the first functional K(+) channel-blocking toxin domain in a mammalian protein. MMP23 (matrix metalloprotease 23) contains a domain (MMP23(TxD)) that is evolutionarily related to peptide toxins from sea anemones.(More)
The voltage-gated potassium channel Kv1.3 is a well-established target for treatment of autoimmune diseases. ShK peptide from a sea anemone is one of the most potent blockers of Kv1.3 but its application as a therapeutic agent for autoimmune diseases is limited by its lack of selectivity against other Kv channels, in particular Kv1.1. Accurate models of(More)
The voltage-gated potassium channel in T lymphocytes, Kv1.3, an important target for immunosuppressants, is blocked by picomolar concentrations of the polypeptide ShK toxin and its analogue ShK-Dap22. ShK-Dap22 shows increased selectivity for Kv1.3, and our goal was to determine the molecular basis for this selectivity by probing the interactions of ShK and(More)
We examine a spatially discrete reaction-diffusion model based on the interactions that create a periodic pattern in the Drosophila eye imaginal disc. This model is known to be capable of generating a regular hexagonal pattern of gene expression behind a moving front, as observed in the fly system. In order to better understand the novel "switch and(More)
HsTX1 toxin, from the scorpion Heterometrus spinnifer, is a 34-residue, C-terminally amidated peptide cross-linked by four disulfide bridges. Here we describe new HsTX1 analogues with an Ala, Phe, Val or Abu substitution at position 14. Complexes of HsTX1 with the voltage-gated potassium channels Kv1.3 and Kv1.1 were created using docking and molecular(More)