Michael W. Fay

Learn More
We report on PbS colloidal nanocrystals that combine within one structure solubility in physiological solvents with near-infrared photoluminescence, and magnetic and optical properties tuneable by the controlled incorporation of magnetic impurities (Mn). We use high magnetic fields (B up to 30 T) to measure the magnetization of the nanocrystals in liquid(More)
We investigated a range of different mesoporous NiO electrodes prepared by different research groups and private firms in Europe to determine the parameters which influence good quality photoelectrochemical devices. This benchmarking study aims to solve some of the discrepancies in the literature regarding the performance of p-DSCs due to differences in the(More)
Mg-Ti alloys have uncommon optical and hydrogen absorbing properties, originating from a " spinodal-like " microstructure with a small degree of chemical short-range order in the atomic distribution. In the present study we artificially engineer short-range order by depositing Pd-capped Mg/Ti multilayers with different periodici-ties. Notwithstanding the(More)
In this work, the cutting of carbon nanotubes is investigated using silver nanoparticles deposited on arc discharge multi-walled carbon nanotubes. The composite is subsequently heated in air to fabricate shortened multi-walled nanotubes. Complementary transmission electron microscopy and spectroscopy techniques shed light on the cutting mechanism. The(More)
We report on an example of confined magnetic ions with long spin coherence near room temperature. This was achieved by confining single Mn(2+) spins in colloidal semiconductor quantum dots (QDs) and by dispersing the QDs in a proton-spin free matrix. The controlled suppression of Mn-Mn interactions and minimization of Mn-nuclear spin dipolar interactions(More)
  • 1