Learn More
Physical inactivity in combination with a sedentary lifestyle is strongly associated with an increased risk of development of inflammatory-mediated diseases, including autoimmune disorders. Recent studies suggest that anti-inflammatory effects of physical exercise may be of therapeutic value in some affected individuals. In this study, we determined the(More)
Obstructive sleep apnea represents a significant public health concern. Afferent vagal activation is implicated in increased apnea susceptibility by reducing upper airway muscle tone via activation of serotonin receptors in the nodose ganglia. Previous investigations demonstrated that systemically administered cannabinoids can be used therapeutically to(More)
The prevalence of obstructive sleep apnea (OSA) in Americans is 9% and increasing. Increased afferent vagal activation may predispose to OSA by reducing upper airway muscle activation/patency and disrupting respiratory rhythmogenesis. Vagal afferent neurons are inhibited by cannabinoid type 1 (CB1) or cannabinoid type 2 (CB2) receptors in animal models of(More)
Obstructive sleep apnea (OSA) affects one in five adult males and is associated with significant comorbidity, cognitive impairment, excessive daytime sleepiness, and reduced quality of life. For over 25 years, the primary treatment has been continuous positive airway pressure, which introduces a column of air that serves as a pneumatic splint for the upper(More)
Afferent signaling via the vagus nerve transmits important general visceral information to the central nervous system from many diverse receptors located in the organs of the abdomen and thorax. The vagus nerve communicates information from stimuli such as heart rate, blood pressure, bronchopulmonary irritation, and gastrointestinal distension to the(More)
Evidence suggests that vagal nerve activity may play a role in sleep apnea induction. In anesthetized rats, dronabinol, a cannabinoid (CB) receptor agonist, injected into the nodose ganglia attenuates reflex apnea and increases genioglossus activity, and reflex apnea attenuation is blocked by systemic pre-treatment with cannabinoid type 1 and/or type 2(More)
A short-term exposure to moderately intense physical exercise affords a novel measure of protection against autoimmune-mediated peripheral nerve injury. Here, we investigated the mechanism by which forced exercise attenuates the development and progression of experimental autoimmune neuritis (EAN), an established animal model of Guillain-Barré syndrome.(More)
  • 1