Learn More
RNA transcripts encoding the 2C-subtype of serotonin (5HT(2C)) receptor undergo up to five adenosine-to-inosine editing events to encode twenty-four protein isoforms. To examine the effects of altered 5HT(2C) editing in vivo, we generated mutant mice solely expressing the fully-edited (VGV) isoform of the receptor. Mutant animals present phenotypic(More)
The serotonin 2C receptor (5-HT(2C)R) plays a significant role in psychiatric disorders (e.g., depression) and is a target for pharmacotherapy. The 5-HT(2C)R is widely expressed in brain and spinal cord and is the only G-protein coupled receptor currently known to undergo mRNA editing, a post-transcriptional modification that results in translation of(More)
Aggressive behavior in mammals is linked to feeding. Interactions between neuropeptide tyrosine (NPY) and serotonergic neurons provide this link. Studies of aggressive behavior in mice in which the Y(1) subtype of NPY receptor was knocked out further define the synaptic circuits responsible for the interrelation of these instinctive behaviors.
Transcripts encoding 5-HT(2C) receptors are modified posttranscriptionally by RNA editing, generating up to 24 protein isoforms. In recombinant cells, the fully edited isoform, 5-HT(2C-VGV), exhibits blunted G-protein coupling and reduced constitutive activity. The present studies examine the signal transduction properties of 5-HT(2C-VGV) receptors in brain(More)
RNA editing is a post-transcriptional modification in which adenosine residues are converted to inosine (adenosine-to-inosine editing). Commonly used methodologies to quantify RNA editing levels involve either direct sequencing or pyrosequencing of individual cDNA clones. The limitations of these methods lead to a small number of clones characterized in(More)
Type 2 diabetes (T2D) is a major risk factor for late-onset Alzheimer's disease (AD). A variety of metabolic changes related to T2D (e.g. hyperinsulinemia, hyperglycemia, and elevated branched-chain amino acids) have been proposed as mechanistic links, but the basis for this association remains unknown. Retromer-dependent trafficking is implicated in the(More)
OBJECTIVE The physiology of the weight-reduced (WR) state suggests that pharmacologic agents affecting energy homeostasis may have greater efficacy in WR individuals. Our aim was to establish a protocol that allows for evaluation of efficacy of weight maintenance agents and to assess the effectiveness of AZD2820, a novel melanocortin 4 receptor (MC4R)(More)
Transcripts encoding ADAR1, a double-stranded, RNA-specific adenosine deaminase involved in the adenosine-to-inosine (A-to-I) editing of mammalian RNAs, can be alternatively spliced to produce an interferon-inducible protein isoform (p150) that is up-regulated in both cell culture and in vivo model systems in response to pathogen or interferon stimulation.(More)
Prader-Willi syndrome (PWS) is caused by a loss of paternally expressed genes in an imprinted region of chromosome 15q. Among the canonical PWS phenotypes are hyperphagic obesity, central hypogonadism, and low growth hormone (GH). Rare microdeletions in PWS patients define a 91-kb minimum critical deletion region encompassing 3 genes, including the(More)