Michael V. Knopp

Learn More
Although there exist some reference and stereotactic anatomical human brain atlases, there is no equivalent cerebrovascular atlas. A 3D reference atlas of the human cerebrovasculature that is interactive, stereotactic, very detailed, completely parcellated, fully labeled, extendable, dissectible, deformable, and user friendly, is needed in education,(More)
In this work, we propose a novel method for deformable tensor-to-tensor registration of Diffusion Tensor Images. Our registration method models the distances in between the tensors with Geode-sic-Loxodromes and employs a version of Multi-Dimensional Scaling (MDS) algorithm to unfold the manifold described with this metric. Defining the same shape properties(More)
The use of multivariate pattern recognition for the analysis of neural representations encoded in fMRI data has become a significant research topic, with wide applications in neuroscience and psychology. A popular approach is to learn a mapping from the data to the observed behavior. However, identifying the instantaneous cognitive state without reference(More)
Presented is a new computer-aided multispectral image processing method which is used in three spatial dimensions and one spectral dimension where the dynamic, contrast enhanced magnetic resonance parameter maps derived from voxel-wise model-fitting represent the spectral dimension. The method is based on co-occurrence analysis using a 3-D window of(More)
PURPOSE The purpose of this study was to evaluate the diagnostic value and tumor-vascular display properties (microcirculation) of two different functional MRI post-processing and display (color and gray-scale display) techniques used in oncology. MATERIALS AND METHODS The study protocol was approved by the IRB and written informed consent was obtained(More)
Motion during the acquisition of dynamic contrast enhanced MRI can cause model-fitting errors requiring co-registration. Clinical implementations use a pharmacokinetic model to determine lesion parameters from the contrast passage. The input to the model is the time-intensity plot from a region of interest (ROI) covering the lesion extent. Motion correction(More)