Learn More
The Deepwater Horizon blowout is the largest offshore oil spill in history. We present results from a subsurface hydrocarbon survey using an autonomous underwater vehicle and a ship-cabled sampler. Our findings indicate the presence of a continuous plume of oil, more than 35 kilometers in length, at approximately 1100 meters depth that persisted for months(More)
Thirty years after the first discovery of high-temperature submarine venting, the vast majority of the global mid-ocean ridge remains unexplored for hydrothermal activity. Of particular interest are the world's ultraslow spreading ridges that were the last to be demonstrated to host high-temperature venting but may host systems particularly relevant to(More)
We have established an Australia-wide observation program that exhibits recent developments in autonomous underwater vehicle (AUV) systems to deliver precisely navigated time series benthic imagery at selected reference stations on Australia's continental shelf. These observations are designed to help characterize changes in benthic assemblage composition(More)
In this paper we propose an approach to SLAM suitable for bathymetric mapping by an Autonomous Underwater Vehicle (AUV). AUVs typically do not have access to GPS while underway and the survey areas of interest are unlikely to contain features that can easily be identified and tracked using bathymetric sonar. We demonstrate how the uncertainty in the vehicle(More)
The Arctic seafloor remains one of the last unexplored areas on Earth. Exploration of this unique environment using standard remotely operated oceanographic tools has been obstructed by the dense Arctic ice cover. In the summer of 2007 the Arctic Gakkel Vents Expedition (AGAVE) was conducted with the express intention of understanding aspects of the marine(More)
This paper describes an approach to achieving high resolution, repeated benthic surveying using an Autonomous Underwater Vehicle (AUV). A stereo based Simultaneous Localisation and Mapping (SLAM) technique is used to estimate the trajectory of the vehicle during multiple overlapping grid based surveys. The vehicle begins each dive on the surface and uses(More)
Robotic agents that can explore and sample in a completely unsupervised fashion could greatly increase the amount of scientific data gathered in dangerous and inaccessible environments. Our application is imaging the benthos using an autonomous underwater vehicle with limited communication to surface craft. Robotic exploration of this nature demands in situ(More)
Figure 1: A typical deployment scenario for the AUV consisted of an open lead or pond into which the vehicle was released. The leads often contained large broken pieces of ice. The aerial view on the right shows a common case, in which the icebreaker (lower-right corner) copes with 90% or greater ice cover. The ship's trail of broken ice leads upward and to(More)
This paper describes a two week deployment of the Autonomous Underwater Vehicle (AUV) Sirius on the Tasman Peninsula in SE Tasmania and in the Huon Marine Protected Area (MPA) to the South West of Hobart. The objective of the deployments described in this work were to document biological assemblages associated with rocky reef systems in shelf waters beyond(More)