Learn More
1. INTRODUCTION Finding a general mechanism for switching between the continuous and discrete signal domains is one of the fundamental issues in signal processing. It is a question that arises naturally during the acquisition process where an analog signal or an image is to be converted into a sequence of numbers (discrete representation). Conversely, the(More)
This paper presents an account of the current state of sampling, 50 years after Shannon’s formulation of the sampling theorem. The emphasis is on regular sampling, where the grid is uniform. This topic has benefited from a strong research revival during the past few years, thanks in part to the mathematical connections that were made with wavelet theory. To(More)
We present an automatic subpixel registration algorithm that minimizes the mean square intensity difference between a reference and a test data set, which can be either images (two-dimensional) or volumes (three-dimensional). It uses an explicit spline representation of the images in conjunction with spline processing, and is based on a coarse-to-fine(More)
This paper describes a new approach to the characterization of texture properties at multiple scales using the wavelet transform. The analysis uses an overcomplete wavelet decomposition, which yields a description that is translation invariant. It is shown that this representation constitutes a tight frame of l(2) and that it has a fast iterative algorithm.(More)
This paper introduces a new approach to orthonormal wavelet image denoising. Instead of postulating a statistical model for the wavelet coefficients, we directly parametrize the denoising process as a sum of elementary nonlinear processes with unknown weights. We then minimize an estimate of the mean square error between the clean image and the denoised(More)
We propose a new method for the intermodal registration of images using a criterion known as mutual information. Our main contribution is an optimizer that we specifically designed for this criterion. We show that this new optimizer is well adapted to a multiresolution approach because it typically converges in fewer criterion evaluations than other(More)
We propose a general approach for the design of 2D feature detectors from a class of steerable functions based on the optimization of a Canny-like criterion. In contrast with previous computational designs, our approach is truly 2D and provides filters that have closed-form expressions. It also yields operators that have a better orientation selectivity(More)