Michael Travisano

Learn More
We followed evolutionary change in 12 populations of Escherichia coli propagated for 10,000 generations in identical environments. Both morphology (cell size) and fitness (measured in competition with the ancestor) evolved rapidly for the first 2000 generations or so after the populations were introduced into the experimental environment, but both were(More)
The contributions of adaptation, chance, and history to the evolution of fitness and cell size were measured in two separate experiments using bacteria. In both experiments, populations propagated in identical environments achieved similar fitnesses, regardless of prior history or subsequent chance events. In contrast, the evolution of cell size, a trait(More)
The SUC multigene family of the single-celled yeast Saccharomyces cerevisiae is polymorphic, with genes varying both in number and activity. All of the genes encode invertase, an enzyme that is secreted to digest sucrose outside of the cell. This communal endeavour creates the potential for individual cells to defect (cheat) by stealing the sugar digested(More)
A central feature of all adaptive radiations is morphological divergence, but the phenotypic innovations that are responsible are rarely known. When selected in a spatially structured environment, populations of the bacterium Pseudomonas fluorescens rapidly diverge. Among the divergent morphs is a mutant type termed "wrinkly spreader" (WS) that colonizes a(More)
The distribution of the number of pairwise differences calculated from comparisons between n haploid genomes has frequently been used as a starting point for testing the hypothesis of linkage equilibrium. For this purpose the variance of the pairwise differences, VD, is used as a test statistic to evaluate the null hypothesis that all loci are in linkage(More)
Throughout most of the mammalian genome, genetically regulated developmental programming establishes diverse yet predictable epigenetic states across differentiated cells and tissues. At metastable epialleles (MEs), conversely, epigenotype is established stochastically in the early embryo then maintained in differentiated lineages, resulting in dramatic and(More)
We investigate adaptive diversification in experimental Escherichia coli populations grown in serial batch cultures on a mixture of glucose and acetate. All 12 experimental lines were started from the same genetically uniform ancestral strain but became highly polymorphic for colony size after 1000 generations. Five populations were clearly dimorphic and(More)
It is widely assumed that resistance to consumers (e.g., predators or pathogens) comes at a "cost," that is, when the consumer is absent the resistant organisms are less fit than their susceptible counterparts. It is unclear what factors determine this cost. We demonstrate that epistasis between genes that confer resistance to two different consumers can(More)
An important problem in microbial ecology is to identify those phenotypic attributes that are responsible for competitive fitness in a particular environment. Thousands of papers have been published on the physiology, biochemistry, and molecular genetics of Escherichia coli and other bacterial models. Nonetheless, little is known about what makes one(More)