Michael Ting

Learn More
The application that motivates this paper is molecular imaging at the atomic level. When discretized at subatomic distances, the volume is inherently sparse. Noiseless measurements from an imaging technology can be modeled by convolution of the image with the system point spread function (psf). Such is the case with magnetic resonance force microscopy(More)
Meeting a greenhouse gas (GHG) reduction target of 80% below 1990 levels in the year 2050 requires detailed long-term planning due to complexity, inertia, and path dependency in the energy system. A detailed investigation of supply and demand alternatives is conducted to assess requirements for future California energy systems that can meet the 2050 GHG(More)
— Detection of a finite state Markov signal in additive white Gaussian noise (AWGN) can be done in an intuitive manner by applying an appropriate filter and using an energy detector. One might not expect this heuristic approach to signal detection to be optimal. However, in this paper, we show that for a certain type of finite state Markov signal, namely(More)
We would like to thank Adam Meirowitz for his very helpful comments on an earlier draft, and Sunil Kumar, Dilip Mookherjee, and Debraj Ray for many illuminating conversations over the years. Abstract Models with adaptive agents have become increasingly popular in computational sociology (e.g. Macy 1991, Macy and Flache 2002). In this paper we show that at(More)
Fetal mesenchymal stem/stromal cells (MSC) represent a developmentally-advantageous cell type with translational potential. To enhance adult MSC migration, studies have focussed on the role of the chemokine receptor CXCR4 and its ligand SDF-1 (CXCL12), but more recent work implicates an intricate system of CXCR4 receptor dimerization, intracellular(More)
This paper considers the detection of a Markov signal in additive white Gaussian noise (AWGN). Here, the Markov signal is taken to be a certain class of random walk processes. A closed form expression of the likelihood ratio (LR) is derived for a general Markov signal in AWGN. Then, under the conditions of low signal to noise ratio (SNR) and long(More)
— Magnetic Resonance Force Microscopy (MRFM) is an emergent technology for measuring spin-induced attonewton forces using a micromachined cantilever. In the interrupted Oscillating Cantilever-driven Adiabatic Reversal (iOSCAR) method, small ensembles of electron spins are manipulated by an external radio frequency (RF) magnetic field to produce small(More)