Learn More
Two large-scale yeast two-hybrid screens were undertaken to identify protein-protein interactions between full-length open reading frames predicted from the Saccharomyces cerevisiae genome sequence. In one approach, we constructed a protein array of about 6,000 yeast transformants, with each transformant expressing one of the open reading frames as a fusion(More)
The plant hormone auxin regulates diverse aspects of plant growth and development. We report that in Arabidopsis, auxin response is dependent on a ubiquitin-ligase (E3) complex called SCFTIR1. The complex consists of proteins related to yeast Skp1p and Cdc53p called ASK and AtCUL1, respectively, as well as the F-box protein TIR1. Mutations in either ASK1 or(More)
Mechanical forces are central to developmental, physiological and pathological processes. However, limited understanding of force transmission within sub-cellular structures is a major obstacle to unravelling molecular mechanisms. Here we describe the development of a calibrated biosensor that measures forces across specific proteins in cells with(More)
The central complex is an important center for higher-order brain function in insects. It is an intricate neuropil composed of four substructures. Each substructure contains repeated neuronal elements which are connected by processes such that topography is maintained. Although the neuronal architecture has been described in several insects and the(More)
Actomyosin contractility affects cellular organization within tissues in part through the generation of mechanical forces at sites of cell-matrix and cell-cell contact. While increased mechanical loading at cell-matrix adhesions results in focal adhesion growth, whether forces drive changes in the size of cell-cell adhesions remains an open question. To(More)
In the absence of perfusable vascular networks, three-dimensional (3D) engineered tissues densely populated with cells quickly develop a necrotic core. Yet the lack of a general approach to rapidly construct such networks remains a major challenge for 3D tissue culture. Here, we printed rigid 3D filament networks of carbohydrate glass, and used them as a(More)
A 14nm logic technology using 2 nd-generation FinFET transistors with a novel subfin doping technique, self-aligned double patterning (SADP) for critical patterning layers, and air-gapped interconnects at performance-critical layers is described. The transistors feature rectangular fins with 8nm fin width and 42nm fin height, 4 th generation high-k metal(More)
Cells respond to mechanical forces whether applied externally or generated internally via the cytoskeleton. To study the cellular response to forces separately, we applied external forces to cells via microfabricated magnetic posts containing cobalt nanowires interspersed among an array of elastomeric posts, which acted as independent sensors to cellular(More)
We report the establishment of a library of micromolded elastomeric micropost arrays to modulate substrate rigidity independently of effects on adhesive and other material surface properties. We demonstrated that micropost rigidity impacts cell morphology, focal adhesions, cytoskeletal contractility and stem cell differentiation. Furthermore, early changes(More)
The yeast two-hybrid system was used to screen a library of random peptides fused to a transcriptional activation domain in order to identify peptides capable of binding to the retinoblastoma protein (Rb). Seven peptides were identified, all of which contain the Leu-X-Cys-X-Glu motif found in Rb-binding proteins, although their activity in the yeast assay(More)