Michael Thommen

Learn More
In all genomes, most amino acids are encoded by more than one codon. Synonymous codons can modulate protein production and folding, but the mechanism connecting codon usage to protein homeostasis is not known. Here we show that synonymous codon variants in the gene encoding gamma-B crystallin, a mammalian eye-lens protein, modulate the rates of translation(More)
In Mycobacterium tuberculosis, the enzyme PafA is responsible for the activation and conjugation of the proteasome-targeting molecule Pup to protein substrates. As the proteasomal pathway has been shown to be vital to the persistence of M. tuberculosis, understanding the reaction mechanism of PafA is critical to the design of antituberculous agents. In this(More)
The molecular machinery of life relies on complex multistep processes that involve numerous individual transitions, such as molecular association and dissociation steps, chemical reactions, and mechanical movements. The corresponding transition rates can be typically measured in vitro but not in vivo. Here, we develop a general method to deduce the in-vivo(More)
Proteins are synthesized as linear polymers and have to fold into their native structure to fulfil various functions in the cell. Folding can start co-translationally when the emerging peptide is still attached to the ribosome and is guided by the environment of the polypeptide exit tunnel and the kinetics of translation. Major questions are: When does(More)
  • 1