Michael Takaza

Learn More
Passive skeletal muscle derives its structural response from the combination of the titin filaments in the muscle fibres, the collagen fibres in the connective tissue and incompressibility due to the high fluid content. Experiments have shown that skeletal muscle tissue presents a highly asymmetrical three-dimensional behaviour when passively loaded in(More)
The passive mechanical properties of muscle tissue are important for many biomechanics applications. However, significant gaps remain in our understanding of the three-dimensional tensile response of passive skeletal muscle tissue to applied loading. In particular, the nature of the anisotropy remains unclear and the response to loading at intermediate(More)
Fracture toughness is important for any material, but to date there have been few investigations of this mechanical property in soft mammalian tissues. This paper presents new data on porcine muscle tissue and a detailed analysis of all previous work. The conclusion is that, in most cases, fracture toughness has not in fact been measured for these tissues.(More)
The passive micro-structural mechanical response of muscle tissue is important for numerous medical applications. However, the recently observed tension/compression asymmetry in porcine muscle remains poorly explained. In particular there remains a lack of understanding of how external tension or compression applied in the fibre or cross-fibre direction(More)
Incisional hernia is a severe complication post-laparoscopic/laparotomy surgery that is commonly associated with the linea alba. However, the few studies on the mechanical properties of the linea alba in the literature appear contradictory, possible due to challenges with the physical dimensions of samples and variations in protocol. This study focuses on(More)
Appropriate mechanical representation of passive muscle tissue is crucial for human body impact modelling. In this paper the experimental and modelling results of compressive loading of freshly slaughtered porcine muscle samples using a drop-tower testing rig are reported. Fibre and cross-fibre compression tests at strain rates varying from 11,600%/s to(More)
  • 1