Michael T Veeman

Learn More
More is becoming known about so-called noncanonical Wnt pathways that signal independently of beta-catenin. Here we review recent developments in both the functions and mechanisms of noncanonical Wnt signaling. We also discuss some unresolved and vexing questions. How many noncanonical Wnt pathways are there? How extensive are the parallels between(More)
In addition to the canonical Wnt/beta-catenin signaling pathway, at least two noncanonical Wnt/Fz pathways have been described: the planar cell polarity (PCP) pathway in Drosophila [1] and the Wnt/calcium pathway in vertebrate embryos [2]. Recent work suggests that a vertebrate pathway homologous to the PCP pathway acts to regulate the convergent extension(More)
Although cell intercalation driven by non-canonical Wnt/planar cell polarity (PCP) pathway-dependent mediolateral cell polarity is important for notochord morphogenesis, it is likely that multiple mechanisms shape the notochord as it converges and extends. Here we show that the recessive short-tailed Ciona savignyi mutation chongmague (chm) has a novel(More)
Ascidian larvae have a hollow, dorsal central nervous system that shares many morphological features with vertebrate nervous systems yet is composed of very few cells. We show here that a null mutation in the gene dmrt1 in the ascidian Ciona savignyi results in profound abnormalities in the development of the sensory vesicle (brain), as well as other(More)
The relative positions of the brain and mouth are of central importance for models of chordate evolution. The dorsal hollow neural tube and the mouth have often been thought of as developmentally distinct structures that may have followed independent evolutionary paths. In most chordates however, including vertebrates and ascidians, the mouth primordia have(More)
Here we use in toto imaging together with computational segmentation and analysis methods to quantify the shape of every cell at multiple stages in the development of a simple organ: the notochord of the ascidian Ciona savignyi. We find that cell shape in the intercalated notochord depends strongly on anterior-posterior (AP) position, with cells in the(More)
We present a model for the automated segmentation of cells from confocal microscopy volumes of biological samples. The segmentation task for these images is exceptionally challenging due to weak boundaries and varying intensity during the imaging process. To tackle this, a two step pruning process based on the Fast Marching Method is first applied to obtain(More)
The Ciona notochord displays planar cell polarity (PCP), with anterior localization of Prickle (Pk) and Strabismus (Stbm). We report that a myosin is polarized anteriorly in these cells and strongly colocalizes with Stbm. Disruption of the actin/myosin machinery with cytochalasin or blebbistatin disrupts polarization of Pk and Stbm, but not of myosin(More)
We address the problem of cell segmentation in confocal microscopy membrane volumes of the ascidian Ciona used in the study of morphogenesis. The primary challenges are non-uniform and patchy membrane staining and faint spurious boundaries from other organelles (e.g. nuclei). Traditional segmentation methods incorrectly attach to faint boundaries producing(More)
We have developed a method to automatically segment notochord cell boundaries from differential interference contrast (DIC) timelapse images of the elongating ascidian tail. The method is based on a specialized parametric active contour, the network snake, which can be initialized as a network of arbitrary but fixed topology and provides an effective(More)