Michael T. Niemier

Learn More
Quoting the International Technology Roadmap for Semiconductors (ITRS) 2009 Emerging Research Devices section, 'Nanomagnetic logic (NML) has potential advantages relative to CMOS of being non-volatile, dense, low-power, and radiation-hard. Such magnetic elements are compatible with MRAM technology, which can provide input–output interfaces. Compatibility(More)
Logical devices made from nano-scale magnets have many potential advantages - systems should be non-volatile, dense, low power, radiation hard, and could have a natural interface to MRAM. Initial work includes experimental demonstrations of logic gates and wires and theoretical studies that consider their power dissipation. This paper looks at power(More)
While still relatively “new”, the quantum-dot cellular automata (QCA) appears to be able to provide many of the properties and functionalities that have made CMOS successful over the past several decades. Early experiments have demonstrated and realized most, if not all, of the “fundamentals” needed for a computational circuit – devices, logic gates, wires,(More)
This paper presents the Quantum-Dot Cellular Automata (QCA) physical design problem, in the context of the VLSI physical design problem. The problem is divided into three subproblems: partitioning, placement, and routing of QCA circuits. This paper presents an ILP formulation and heuristic solution to the partitioning problem, and compares the two sets of(More)
It is well known that CMOS scaling trends are now accompanied by less desirable byproducts such as increased energy dissipation. To combat the aforementioned challenges, solutions are sought at both the device and architectural levels. With this context, this work focuses on embedding a low voltage device, a Tunneling Field Effect Transistor (TFET) within a(More)
When exploring computing elements made from technologies other than CMOS, it is imperative to investigate the effects of physical implementation constraints. This paper focuses on molecular quantum-dot cellular automata circuits. For these circuits, it is very difficult for chemists to fabricate wire crossings (at least in the near future). A novel(More)
Hardware security concerns such as intellectual property (IP) piracy and hardware Trojans have triggered research into circuit protection and malicious logic detection from various design perspectives. In this article, emerging technologies are investigated by leveraging their unique properties for applications in the hardware security domain. Security, for(More)
Quantum-dot Cellular Automata (QCA) is a novel computing mechanism that can represent binary information based on spatial distribution of an electron charge configuration in chemical molecules. In this article, we present the first partitioning and placement algorithm for automatic QCA layout. We identify several objectives and constraints that will enhance(More)