Michael T. McMahon

Learn More
The p62/SQSTM1 (sequestosome 1) protein, which acts as a cargo receptor for autophagic degradation of ubiquitinated targets, is up-regulated by various stressors. Induction of the p62 gene by oxidative stress is mediated by NF-E2-related factor 2 (NRF2) and, at the same time, p62 protein contributes to the activation of NRF2, but hitherto the mechanisms(More)
Northern blotting has shown that mouse small intestine contains relatively large amounts of the nuclear factor-E2 p45-related factor (Nrf) 2 transcription factor but relatively little Nrf1. Regulation of intestinal antioxidant and detoxication enzymes by Nrf2 has been assessed using a mouse line bearing a targeted disruption of the gene encoding this(More)
The cap'n'collar (CNC) bZIP transcription factor Nrf2 controls expression of genes for antioxidant enzymes, metal-binding proteins, drug-metabolising enzymes, drug transporters, and molecular chaperones. Many chemicals that protect against carcinogenesis induce Nrf2-target genes. These compounds are all thiol-reactive and stimulate an adaptive response to(More)
Keap1 is a negative regulator of Nrf2, a bZIP transcription factor that mediates adaptation to oxidative stress. Previous studies suggested this negative regulation is a consequence of Keap1 controlling the subcellular distribution of Nrf2. We now report that Keap1 also controls the total cellular level of Nrf2 protein. In the RL34 non-transformed rat liver(More)
STAT (signal transducers and activators of transcription) proteins are transcription factors which are activated by phosphorylation on tyrosine residues upon stimulation by cytokines. Seven members of the STAT family are known, including the closely related STAT5A and STAT5B, which are activated by various cytokines. Except for prolactin-dependent(More)
This article provides an overview of the mechanisms by which cancer chemopreventive blocking agents increase the expression of detoxication and antioxidant genes. These agents all appear capable of transcriptionally activating a gene battery that includes NAD(P)H:quinone oxidoreductase, aldo-keto reductases, glutathione S-transferases,(More)
Recognition and repair of cellular damage is crucial if organisms are to survive harmful environmental conditions. In mammals, the Keap1 protein orchestrates this response, but how it perceives adverse circumstances is not fully understood. Herein, we implicate NO, Zn(2+), and alkenals, endogenously occurring chemicals whose concentrations increase during(More)
An overview is provided of the cancer chemoprevention actions of phenolic antioxidants and 6-ethoxy-1,2-dihydro-2,2,4-trimethylquinoline (ethoxyquin). These agents principally appear to exert their beneficial effects through induction of phase II drug-metabolizing enzymes such as glutathione S-transferase (GST). The requirement for oxidative metabolism of(More)
NQO1 [NAD(P)H:quinone oxidoreductase 1] has an integral role in cellular responses to oxidative stress. The expression of NQO1 is up-regulated in the mouse following challenge with electrophilic chemicals, in an Nrf2 (NF-E2 p45-related factor 2)-dependent fashion, but the molecular basis for this observation remains unexplained. Through characterization of(More)
To better understand the role of transcription factor NF-E2-related factor (NRF) 2 in the human and its contribution to cancer chemoprevention, we have knocked down its negative regulators, Kelch-like ECH-associated protein 1 (KEAP1) and broad-complex, tramtrack and bric à brac and cap'n'collar homology 1 (BACH1), in HaCaT keratinocytes. Whole-genome(More)