Learn More
Widespread use of antimalarial agents can profoundly influence the evolution of the human malaria parasite Plasmodium falciparum. Recent selective sweeps for drug-resistant genotypes may have restricted the genetic diversity of this parasite, resembling effects attributed in current debates to a historic population bottleneck. Chloroquine-resistant (CQR)(More)
The determinant of verapamil-reversible chloroquine resistance (CQR) in a Plasmodium falciparum genetic cross maps to a 36 kb segment of chromosome 7. This segment harbors a 13-exon gene, pfcrt, having point mutations that associate completely with CQR in parasite lines from Asia, Africa, and South America. These data, transfection results, and selection of(More)
Evolving resistance to artemisinin-based compounds threatens to derail attempts to control malaria. Resistance has been confirmed in western Cambodia and has recently emerged in western Thailand, but is absent from neighboring Laos. Artemisinin resistance results in reduced parasite clearance rates (CRs) after treatment. We used a two-phase strategy to(More)
Genetic investigations of malaria require a genome-wide, high-resolution linkage map of Plasmodium falciparum. A genetic cross was used to construct such a map from 901 markers that fall into 14 inferred linkage groups corresponding to the 14 nuclear chromosomes. Meiotic crossover activity in the genome proved high (17 kilobases per centimorgan) and notably(More)
Malaria elimination strategies require surveillance of the parasite population for genetic changes that demand a public health response, such as new forms of drug resistance. Here we describe methods for the large-scale analysis of genetic variation in Plasmodium falciparum by deep sequencing of parasite DNA obtained from the blood of patients with malaria,(More)
Mutations in PfCRT (Plasmodium falciparum chloroquine-resistant transporter), particularly the substitution at amino acid position 76, confer chloroquine (CQ) resistance in P. falciparum. Point mutations in the homolog of the mammalian multidrug resistance gene (pfmdr1) can also modulate the levels of CQ response. Moreover, parasites with the same pfcrt and(More)
Copy number polymorphism (CNP) is ubiquitous in eukaryotic genomes, but the degree to which this reflects the action of positive selection is poorly understood. The first gene in the Plasmodium folate biosynthesis pathway, GTP-cyclohydrolase I (gch1), shows extensive CNP. We provide compelling evidence that gch1 CNP is an adaptive consequence of selection(More)
BACKGROUND The emergence of artemisinin-resistant Plasmodium falciparum in Southeast Asia threatens malaria treatment efficacy. Mutations in a kelch protein encoded on P. falciparum chromosome 13 (K13) have been associated with resistance in vitro and in field samples from Cambodia. METHODS P. falciparum infections from artesunate efficacy trials in(More)
BACKGROUND The recently emerged protein interaction network paradigm can provide novel and important insights into the innerworkings of a cell. Yet, the heavy burden of both false positive and false negative protein-protein interaction data casts doubt on the broader usefulness of these interaction sets. Approaches focusing on one-protein-at-a-time have(More)
The determinants of transcriptional regulation in malaria parasites remain elusive. The presence of a well-characterized gene expression cascade shared by different Plasmodium falciparum strains could imply that transcriptional regulation and its natural variation do not contribute significantly to the evolution of parasite drug resistance. To clarify the(More)