Michael T. Dellinger

Learn More
There is growing evidence that vascular endothelial growth factor-A (VEGF-A), a ligand of the receptor tyrosine kinases VEGFR1 and VEGFR2, promotes lymphangiogenesis. However, the underlying mechanisms by which VEGF-A induces the growth of lymphatic vessels remain poorly defined. Here we report that VEGFR2, not VEGFR1, is the primary receptor regulating(More)
The pharmacological inhibition of general transcriptional regulators has the potential to block growth through targeting multiple tumorigenic signalling pathways simultaneously. Here, using an innovative cell-based screen, we identify a structurally unique small molecule (named JIB-04) that specifically inhibits the activity of the Jumonji family of histone(More)
Vascular endothelial growth factor receptor 2 (VEGFR2) is highly expressed by lymphatic endothelial cells and has been shown to stimulate lymphangiogenesis in adult mice. However, the role VEGFR2 serves in the development of the lymphatic vascular system has not been defined. Here we use the Cre-lox system to show that the proper development of the(More)
Recent discoveries in molecular lymphology, developmental biology, and tumor biology in the context of long-standing concepts and observations on development, growth, and neoplasia implicate overlapping pathways, processes, and clinical manifestations in developmental disorders and cancer metastasis. Highlighted in this review are some of what is known (and(More)
  • 1