Michael Täger

Learn More
We report here the effect of aspirin on the onset of replicative senescence. Endothelial cells that were cultured until cumulative population doublings 40 showed clear signs of aging. Incubation with aspirin inhibited senescence-associated beta-galactosidase activity and increased telomerase activity. Along with the delayed onset of senescence, aspirin(More)
The proteindisulfide isomerase (PDI), a multifunctional cytoplasmic enzyme with additional chaperone activity, has been shown recently, using monoclonal antibodies, to be located on the membrane of mature human B lymphocytes and B cell chronic lymphocytic leukemia (B-CLL) cells. Here, evidence is presented that this antigen exhibits catalytic activity as(More)
Various studies have shown that the ectoenzyme dipeptidyl peptidase IV (DP IV, CD26), expressed on T, NK and B cells in the human immune system, is involved in the regulation of DNA synthesis and cytokine production. The DP IV/CD26 was found also on mouse splenocytes and thymocytes. Here, we show that the specific DP IV inhibitors Lys[Z(NO2)]-thiazolidide,(More)
The cellular dipeptidyl peptidase IV (DPIV, E.C., CD26) is a type II membrane peptidase with various physio-logical functions. Our main knowledge on DPIV comes from studies of soluble DPIV which plays a role in regulation of glucose homeostasis by inactivation of the incretins glucagon-like peptide-1 and glucose-dependent insulinotropic(More)
OBJECTIVE Asymmetrical dimethylarginine (ADMA) is an endogenous inhibitor of nitric oxide synthase (NOS), and its accumulation has been associated with cardiovascular disease. We aimed to investigate the role of ADMA in endothelial cell senescence. METHODS AND RESULTS Endothelial cells were cultured until the tenth passage. ADMA was replaced every 48(More)
Multiple sclerosis (MS) is the most frequent demyelinating disease of the central nervous system. Peptidases like dipeptidyl peptidase IV (DP IV, CD26) and aminopeptidase N (APN, CD13) play a regulatory role in T cell activation and represent potential targets for the treatment of inflammatory disorders. Synthetic inhibitors of DP IV and/or APN enzymatic(More)
The ectopeptidases dipeptidyl peptidase IV (DP IV, CD26) and aminopeptidase N (APN, CD13) are known to regulate T cell activation. Since selective inhibitors of DP IV and APN suppress DNA synthesis and cytokine production of stimulated T cells in a TGF-beta1-dependent manner, we tested whether combined application of DP IV and APN inhibitors enhances this(More)
Cerebral inflammation is a hallmark of neuronal degeneration. Dipeptidyl peptidase IV, aminopeptidase N as well as the dipeptidyl peptidases II, 8 and 9 and cytosolic alanyl-aminopeptidase are involved in the regulation of autoimmunity and inflammation. We studied the expression, localisation and activity patterns of these proteases after endothelin-induced(More)
BACKGROUND In the past, different research groups could show that treatment of immune cells with inhibitors of post-proline splitting dipeptidyl aminopeptidases leads to functional changes in the immune system consistent with immunosuppression. This is due to the inhibition of proliferation of lymphocytes and the production of inflammatory cytokines of the(More)
The ectoenzymes dipeptidyl peptidase IV (DP IV, CD26) and aminopeptidase N (APN, CD13) have been implicated in the regulation of T cell activation and function. Both DP IV and APN serve as targets of efficient enzymatic inhibitors which induce autocrine production of TGF-beta1 and subsequent suppression of T cell proliferation and cytokine release. Here, we(More)