Michael Sears Fuhrer

Learn More
Nanostructures are of great interest not only for their basic scientific richness, but also because they have the potential to revolutionize critical technologies. The miniaturization of electronic devices over the past century has profoundly affected human communication, computation, manufacturing and transportation systems. True molecular-scale electronic(More)
We employ scanning probe microscopy to reveal atomic structures and nanoscale morphology of graphene-based electronic devices (i.e., a graphene sheet supported by an insulating silicon dioxide substrate) for the first time. Atomic resolution scanning tunneling microscopy images reveal the presence of a strong spatially dependent perturbation, which breaks(More)
The linear dispersion relation in graphene gives rise to a surprising prediction: the resistivity due to isotropic scatterers, such as white-noise disorder or phonons, is independent of carrier density, n. Here we show that electron-acoustic phonon scattering is indeed independent of n, and contributes only 30 Omega to graphene's room-temperature(More)
Graphene is an attractive material for use in optical detectors because it absorbs light from mid-infrared to ultraviolet wavelengths with nearly equal strength. Graphene is particularly well suited for bolometers-devices that detect temperature-induced changes in electrical conductivity caused by the absorption of light-because its small electron heat(More)
We reduce the dimensionless interaction strength alpha in graphene by adding a water overlayer in ultrahigh vacuum, thereby increasing dielectric screening. The mobility limited by long-range impurity scattering is increased over 30%, due to the background dielectric constant enhancement leading to a reduced interaction of electrons with charged impurities.(More)
A high-mobility (9000 cm2/V‚s) semiconducting single-walled nanotube transistor is used to construct a nonvolatile charge-storage memory element operating at room temperature. Charges are stored by application of a few volts across the silicon dioxide dielectric between nanotube and silicon substrate, and detected by threshold shift of the nanotube(More)
High-resolution noncontact atomic force microscopy of SiO2 reveals previously unresolved roughness at the few-nm length scale, and scanning tunneling microscopy of graphene on SiO2 shows graphene to be slightly smoother than the supporting SiO2 substrate. A quantitative energetic analysis explains the observed roughness of graphene on SiO2 as extrinsic, and(More)
To the Editor — Atomically thin semiconducting MoS2 is of great interest for high-performance flexible electronic and optoelectronic devices. Initial measurements using back-gated field-effect transistor structures on SiO2 yielded mobility values of 1–50 cm2 V-1 s-1 for few-layer MoS2 (refs 1,2). However, greatly increased mobility — as high as 900 cm2 V-1(More)
We use electrostatic force microscopy and scanned gate microscopy to probe the conducting properties of carbon nanotubes at room temperature. Multiwalled carbon nanotubes are shown to be diffusive conductors, while metallic single-walled carbon nanotubes are ballistic conductors over micron lengths. Semiconducting single-walled carbon nanotubes are shown to(More)