Michael Schartl

Learn More
Darwin believed that sexual selection accounts for the evolution of exaggerated male ornaments, such as the sword-like caudal fin extensions of male fishes of the genus Xiphophorus, that appear detrimental to survival. Swordtails continue to feature prominently in empirical work and theories of sexual selection; the pre-existing bias hypothesis has been(More)
Embryonic stem (ES) cell lines provide a unique tool for introducing targeted or random genetic alterations through gene replacement, insertional mutagenesis, and gene addition because they offer the possibility for in vitro selection for the desired, but extremely rare, recombinant genotypes. So far only mouse blastocyst embryos are known to have the(More)
One important mechanism for functional innovation during evolution is the duplication of genes and entire genomes. Evidence is accumulating that during the evolution of vertebrates from early deuterostome ancestors entire genomes were duplicated through two rounds of duplications (the 'one-to-two-to-four' rule). The first genome duplication in chordate(More)
Genes related to the Drosophila melanogaster doublesex and Caenorhabditis elegans mab-3 genes are conserved in human. They are identified by a DNA-binding homology motif, the DM domain, and constitute a gene family (DMRTs). Unlike the invertebrate genes, whose role in the sex-determination process is essentially understood, the function of the different(More)
Rex3, the first reverse transcriptase (RT)-encoding retrotransposon isolated from the melanoma fish model Xiphophorus, is a non-long-terminal-repeat element related to the RTE family. The essential features of Rex3 are (1) an endonuclease and a reverse transcriptase, (2) 5' truncations of most of the copies, (3) a 3' tail consisting of tandem repeats of the(More)
Malignant melanoma in Xiphophorus fish hybrids is caused by the activity of a dominant oncogene Tu. By combining genetic and molecular approaches, we have isolated the melanoma oncogene. We show that its level of expression correlates with the degree of malignancy of the tumour. The corresponding proto-oncogene is developmentally regulated. The Tu gene(More)
Melanoma formation in the teleost Xiphophorus is caused by a dominant genetic locus, Tu. This locus includes the Xmrk oncogene, which encodes a receptor tyrosine kinase. Tumor induction is suppressed in wild-type fish by a tumor suppressor locus, R. Molecular genetic analyses revealed that the Tu locus emerged by nonhomologous recombination of the Xmrk(More)
The X and Y chromosomes of the platyfish (Xiphophorus maculatus) contain a region that encodes several important traits, including the determination of sex, pigment pattern formation, and predisposition to develop malignant melanoma. Several sex-chromosomal crossovers were identified in this region. As the melanoma-inducing oncogene Xmrk is the only(More)