Michael Schaefer

Learn More
Eukaryotic cells respond to many hormones and neurotransmitters with increased activity of the enzyme phospholipase C and a subsequent rise in the concentration of intracellular free calcium ([Ca2+]i). The increase in [Ca2+]i occurs as a result of the release of Ca2+ from intracellular stores and an influx of Ca2+ through the plasma membrane; this influx of(More)
Hormones, neurotransmitters, and growth factors give rise to calcium entry via receptor-activated cation channels that are activated downstream of phospholipase C activity. Members of the transient receptor potential channel (TRPC) family have been characterized as molecular substrates mediating receptor-activated cation influx. TRPC channels are assumed to(More)
Mammalian transient receptor potential channels (TRPCs) form a family of Ca(2+)-permeable cation channels currently consisting of seven members, TRPC1-TRPC7. These channels have been proposed to be molecular correlates for capacitative Ca(2+) entry channels. There are only a few studies on the regulation and properties of the subfamily consisting of TRPC4(More)
This series of meta-analyses examined structural abnormalities of the hippocampus and other brain regions in persons with PTSD compared to trauma-exposed and non-exposed control groups. The findings were significantly smaller hippocampal volumes in persons with PTSD compared to controls with and without trauma exposure, but group differences were moderated(More)
In recent years, human dendritic cells (DCs) could be subdivided into CD304+ plasmacytoid DCs (pDCs) and conventional DCs (cDCs), the latter encompassing the CD1c+, CD16+, and CD141+ DC subsets. To date, the low frequency of these DCs in human blood has essentially prevented functional studies defining their specific contribution to antigen presentation. We(More)
The expression of the chemokine receptor XCR1 and the function of its ligand XCL1 (otherwise referred to as ATAC, lymphotactin, or SCM-1) remained elusive to date. In the present report we demonstrated that XCR1 is exclusively expressed on murine CD8(+) dendritic cells (DCs) and showed that XCL1 is a potent and highly specific chemoattractant for this DC(More)
Many classes of spinal interneurons in zebrafish have been described based on morphology, but their transmitter phenotypes are largely unknown. Here we combine back-filling or genetic labeling of spinal interneurons with in situ staining for markers of neurotransmitter phenotypes, including the vesicular glutamate transporter (VGLUT) genes for glutamatergic(More)
Localized inflammation of a rat's hindpaw elicits an accumulation of beta-endorphin-(END) containing immune cells. We investigated the production, release, and antinociceptive effects of lymphocyte-derived END in relation to cell trafficking. In normal animals, END and proopiomelanocortin mRNA were less abundant in circulating lymphocytes than in those(More)
S.c. painful inflammation leads to an increase in axonal transport of opioid receptors from dorsal root ganglia (DRG) toward the periphery, thus causing a higher receptor density and enhanced opioid analgesia at the injured site. To examine whether this increase is related to transcription, the mRNA of Delta- (DOR) and mu-opioid receptor (MOR) in lumbar DRG(More)
The vanilloid receptor-related TRP channels (TRPV1-6) mediate thermosensation, pain perception and epithelial Ca(2+) entry. As the specificity of TRPV channel heteromerization and determinants governing the assembly of TRPV subunits were largely elusive, we investigated the TRPV homo- and heteromultimerization. To analyze the assembly of TRPV subunits in(More)