Learn More
Studies of higher-order chromatin arrangements are an essential part of ongoing attempts to explore changes in epigenome structure and their functional implications during development and cell differentiation. However, the extent and cell-type-specificity of three-dimensional (3D) chromosome arrangements has remained controversial. In order to overcome(More)
PICH (Plk1-interacting checkpoint helicase) was recently identified as an essential component of the spindle assembly checkpoint and shown to localize to kinetochores, inner centromeres, and thin threads connecting separating chromosomes even during anaphase. In this paper, we have used immuno-fiber fluorescence in situ hybridization and(More)
Recent advances in genome sequencing technologies provide unprecedented opportunities to characterize individual genomic landscapes and identify mutations relevant for diagnosis and therapy. Specifically, whole-exome sequencing using next-generation sequencing (NGS) technologies is gaining popularity in the human genetics community due to the moderate(More)
A gene density-related difference in the radial arrangement of chromosome territories (CTs) was previously described for human lymphocyte nuclei with gene-poor CT #18 located toward the nuclear periphery and gene-dense CT #19 in the nuclear interior (Croft, J.A., J.M. Bridger, S. Boyle, P. Perry, P. Teague, and W.A. Bickmore. 1999. J. Cell Biol.(More)
Exciting advances in fluorescence in situ hybridization and array-based techniques are changing the nature of cytogenetics, in both basic research and molecular diagnostics. Cytogenetic analysis now extends beyond the simple description of the chromosomal status of a genome and allows the study of fundamental biological questions, such as the nature of(More)
This study provides a three-dimensional (3D) analysis of differences between the 3D morphology of active and inactive human X interphase chromosomes (Xa and Xi territories). Chromosome territories were painted in formaldehyde-fixed, three-dimensionally intact human diploid female amniotic fluid cell nuclei (46, XX) with X-specific whole chromosome(More)
Heterogeneity in the genome copy number of tissues is of particular importance in solid tumor biology. Furthermore, many clinical applications such as pre-implantation and non-invasive prenatal diagnosis would benefit from the ability to characterize individual single cells. As the amount of DNA from single cells is so small, several PCR protocols have been(More)
Clinical DNA is often available in limited quantities requiring whole-genome amplification for subsequent genome-wide assessment of copy-number variation (CNV) by array-CGH. In pre-implantation diagnosis and analysis of micrometastases, even merely single cells are available for analysis. However, procedures allowing high-resolution analyses of CNVs from(More)
In recent years a fascinating evolution of different multicolor fluorescence in situ hybridization (FISH) technologies could be witnessed. The various approaches to cohybridize multiple DNA probes in different colors opened new avenues for FISH-based automated karyotyping or the simultaneous analysis of multiple defined regions within the genome. These(More)
Fluorescence in situ hybridization (FISH) plays an essential role in research and clinical diagnostics. The versatility and resolution of FISH depends critically on the probe set used. Here, we describe an improved approach for the generation of specific DNA probes from single copies of chromosomes. Single chromosomes or single chromosomal regions were(More)