Michael R. Speicher

Peter Ulz13
Martina Auer12
Ellen Heitzer12
Jochen B Geigl9
13Peter Ulz
12Martina Auer
12Ellen Heitzer
9Jochen B Geigl
Learn More
Heterogeneity in the genome copy number of tissues is of particular importance in solid tumor biology. Furthermore, many clinical applications such as pre-implantation and non-invasive prenatal diagnosis would benefit from the ability to characterize individual single cells. As the amount of DNA from single cells is so small, several PCR protocols have been(More)
PICH (Plk1-interacting checkpoint helicase) was recently identified as an essential component of the spindle assembly checkpoint and shown to localize to kinetochores, inner centromeres, and thin threads connecting separating chromosomes even during anaphase. In this paper, we have used immuno-fiber fluorescence in situ hybridization and(More)
A gene density-related difference in the radial arrangement of chromosome territories (CTs) was previously described for human lymphocyte nuclei with gene-poor CT #18 located toward the nuclear periphery and gene-dense CT #19 in the nuclear interior (Croft, J.A., J.M. Bridger, S. Boyle, P. Perry, P. Teague, and W.A. Bickmore. 1999. J. Cell Biol.(More)
Keywords Therapy-related myeloid neoplasms. TP53. Leukemogenesis Dear Editor, Therapy-related myeloid neoplasms (t-MNs) are a unique clinical entity occurring as late complication of chemotherapy and radiotherapy administered for a primary disease [1]. According to the WHO classification, t-MNs are thought to be due to mutational events in hematopoietic(More)
Studies of higher-order chromatin arrangements are an essential part of ongoing attempts to explore changes in epigenome structure and their functional implications during development and cell differentiation. However, the extent and cell-type-specificity of three-dimensional (3D) chromosome arrangements has remained controversial. In order to overcome(More)
Recent advances in genome sequencing technologies provide unprecedented opportunities to characterize individual genomic landscapes and identify mutations relevant for diagnosis and therapy. Specifically, whole-exome sequencing using next-generation sequencing (NGS) technologies is gaining popularity in the human genetics community due to the moderate(More)
Abnormalities of chromosome number are the most common genetic aberrations in cancer. The mechanisms regulating the fidelity of mitotic chromosome transmission in mammalian cells are therefore of great interest. Here we show that human cells without an hSecurin gene lose chromosomes at a high frequency. This loss was linked to abnormal anaphases during(More)
Common acquired melanocytic nevi are benign neoplasms that are composed of small, uniform melanocytes and are typically present as flat or slightly elevated pigmented lesions on the skin. We describe two families with a new autosomal dominant syndrome characterized by multiple, skin-colored, elevated melanocytic tumors. In contrast to common acquired nevi,(More)
Clinical DNA is often available in limited quantities requiring whole-genome amplification for subsequent genome-wide assessment of copy-number variation (CNV) by array-CGH. In pre-implantation diagnosis and analysis of micrometastases, even merely single cells are available for analysis. However, procedures allowing high-resolution analyses of CNVs from(More)
  • Ellen Heitzer, Peter Ulz, Jelena Belic, Stefan Gutschi, Franz Quehenberger, Katja Fischereder +14 others
  • 2013
Patients with prostate cancer may present with metastatic or recurrent disease despite initial curative treatment. The propensity of metastatic prostate cancer to spread to the bone has limited repeated sampling of tumor deposits. Hence, considerably less is understood about this lethal metastatic disease, as it is not commonly studied. Here we explored(More)