Learn More
BACKGROUND Cardiac memory (CM) refers to T-wave changes induced by ventricular pacing or arrhythmia that accumulate in magnitude and duration with repeated episodes of abnormal activation. We report herein the kinetics of long-term CM and its association with the ventricular action potential. METHODS AND RESULTS Dogs were paced from the ventricles at(More)
The purpose of this study was to determine whether oligonucleotides the size of siRNA are permeable to gap junctions and whether a specific siRNA for DNA polymerase beta (pol beta) can move from one cell to another via gap junctions, thus allowing one cell to inhibit gene expression in another cell directly. To test this hypothesis, fluorescently labelled(More)
Complex modulation of voltage-gated Ca2+ currents through the interplay among Ca2+ channels and various Ca(2+)-binding proteins is increasingly being recognized. The K+ channel interacting protein 2 (KChIP2), originally identified as an auxiliary subunit for K(V)4.2 and a component of the transient outward K+ channel (I(to)), is a Ca(2+)-binding protein(More)
BACKGROUND In depolarized myocardial infarct epicardial border zones, the cardiac sodium channel (SCN5A) is largely inactivated, contributing to low action potential upstroke velocity (V(max)), slow conduction, and reentry. We hypothesized that a fast inward current such as the skeletal muscle sodium channel (SkM1) operating more effectively at depolarized(More)
OBJECTIVE Our goal was to study rate adaptation of atrial action potentials in non-steady and steady states to further our understanding of mechanisms determining inducibility and stability of atrial fibrillation. METHODS We used standard microelectrode techniques to examine the characteristics of steady-state action potentials paced at regular cycle(More)
Endothelin-1 (ET-1) is an important contributor to ventricular hypertrophy and failure, which are associated with arrhythmogenesis and sudden death. To elucidate the mechanism(s) underlying the arrhythmogenic effects of ET-1 we tested the hypothesis that long-term (24 hrs) exposure to ET-1 impairs impulse conduction in cultures of neonatal rat ventricular(More)
We used open tip microelectrodes containing a K+-sensitive liquid ion exchanger to determine directly the intracellular K+ activity in beating canine cardiac Purkinje fibers. For preparations superfused with Tyrode's solution in which the K+ concentration was 4.0 mM, intracellular K+ activity (ak) was 130.0+/-2.3 mM (mean+/-SE) at 37 degrees C. The(More)
A trial fibrillation (AF) is a ubiquitous yet diverse cardiac arrhythmia whose incidence increases with age; with most forms of cardiac and some pulmonary diseases; and with a number of metabolic, toxic, endocrine, or genetic abnormalities. 1,2 Classification of clinical AF subtypes can be achieved on the basis of the ease by which episodes of the(More)
BACKGROUND Ca2+ leak from the sarcoplasmic reticulum (SR) may play an important role in triggering and/or maintaining atrial arrhythmias, including atrial fibrillation (AF). Protein kinase A (PKA) hyperphosphorylation of the cardiac ryanodine receptor (RyR2) resulting in dissociation of the channel-stabilizing subunit calstabin2 (FK506-binding protein or(More)
We tested the ability of human mesenchymal stem cells (hMSCs) to deliver a biological pacemaker to the heart. hMSCs transfected with a cardiac pacemaker gene, mHCN2, by electroporation expressed high levels of Cs+-sensitive current (31.1+/-3.8 pA/pF at -150 mV) activating in the diastolic potential range with reversal potential of -37.5+/-1.0 mV, confirming(More)