Learn More
Influx of Ca(2+) through store-operated Ca(2+) channels (SOCs) is a central component of receptor-evoked Ca(2+) signals. Orai channels are SOCs that are gated by STIM1, a Ca(2+) sensor located in the ER but how it gates and regulates the Orai channels is unknown. Here, we report the molecular basis for gating of Orais by STIM1. All Orai channels are fully(More)
Cystic fibrosis transmembrane conductance regulator (CFTR) is an ATP-binding cassette (ABC) transporter that functions as a chloride channel. Nucleotide-binding domain 1 (NBD1), one of two ABC domains in CFTR, also contains sites for the predominant CF-causing mutation and, potentially, for regulatory phosphorylation. We have determined crystal structures(More)
Chloride absorption and bicarbonate secretion are vital functions of epithelia, as highlighted by cystic fibrosis and diseases associated with mutations in members of the SLC26 chloride-bicarbonate exchangers. Many SLC26 transporters (SLC26T) are expressed in the luminal membrane together with CFTR, which activates electrogenic chloride-bicarbonate exchange(More)
Most epithelia that express CFTR secrete fluid rich in HCO3- and poor in Cl- that is generated by a CFTR-dependent Cl- absorption and HCO3- secretion process that when aberrant leads to human diseases such as cystic fibrosis and congenital chloride diarrhoea. Epithelial Cl- absorption and HCO3- secretion require expression of CFTR and other Cl- and HCO3-(More)
SLC26A9 is a member of the SLC26 family of anion transporters, which is expressed at high levels in airway and gastric surface epithelial cells. The transport properties and regulation of SLC26A9, and thus its physiological function, are not known. Here we report that SLC26A9 is a highly selective Cl(-) channel with minimal OH(-)/HCO(3)(-) permeability that(More)
The SLC26 transporters are a family of mostly luminal Cl- and HCO3- transporters. The transport mechanism and the Cl-/HCO3- stoichiometry are not known for any member of the family. To address these questions, we simultaneously measured the HCO3- and Cl- fluxes and the current or membrane potential of slc26a3 and slc26a6 expressed in Xenopus laevis oocytes(More)
Transepithelial Cl(-) and HCO(3)(-) transport is critically important for the function of all epithelia and, when altered or ablated, leads to a number of diseases, including cystic fibrosis, congenital chloride diarrhea, deafness, and hypotension (78, 111, 119, 126). HCO(3)(-) is the biological buffer that maintains acid-base balance, thereby preventing(More)
Fluid and HCO(3)(-) secretion are vital functions of the pancreatic duct and other secretory epithelia. CFTR and Cl(-)/HCO(3)(-) exchange activity at the luminal membrane are required for these functions. The molecular identity of the Cl(-)/HCO(3)(-) exchangers and their relationship with CFTR in determining fluid and HCO(3)(-) secretion are not known. We(More)
HCO(3)(-) secretion is a vital activity in cystic fibrosis transmembrane conductance regulator (CFTR)-expressing epithelia. However, the role of CFTR in this activity is not well understood. Simultaneous measurements of membrane potential and pH(i) and/or current in CFTRexpressing Xenopus oocytes revealed dynamic control of CFTR Cl(-)/HCO(3)(-) permeability(More)
We previously demonstrated that Treponema pallidum TroA is a periplasmic metal-binding protein (MBP) with a distinctive alpha-helical backbone. To better understand the mechanisms of metal binding and release by TroA, we determined the crystal structure of the apoprotein at a resolution of 2.5 A and compared it to that of the Zn(II)-bound form (Protein Data(More)