Michael R. Capalbo

Learn More
The main concrete result of this paper is the first explicit construction of constant degree <i>lossless</i> expanders. In these graphs, the expansion factor is almost as large as possible: (1&#8212;&#949;)<i>D</i>, where <i>D</i> is the degree and &#949; is an arbitrarily small constant. The best previous explicit constructions gave expansion factor D/2,(More)
Let H be a family of graphs. A graph T is H-universal if it contains a copy of each H ∈ H as a subgraph. Let H(k, n) denote the family of graphs on n vertices with maximum degree at most k. For all positive integers k and n, we construct an H(k, n)-universal graph T with O k (n 2− 2 k log 4 k n) edges and exactly n vertices. The number of edges is almost as(More)
The main concrete result of this paper is the first explicit construction of constant degree lossless expanders. In these graphs, the expansion factor is almost as large as possible: © is an arbitrarily small constant. Such graphs are essential components in networks that can implement fast distributed, routing algorithms e.g. [PU89, ALM96, BFU99]. They are(More)
Let 3& be the family of N-vertex graphs of maximum degree q, and with a 2-sector function j(z) < z " '. For every constant positive 6, we show via an explicit construction algorithm that there exists an 3iT3(universal graph r' of size O,(N). This construction is a significant improvement over the best previously known construction of size n(N2-").