Learn More
There has been a proliferation in the development of Lagrangian analytical methods for detecting coherent structures in fluid flow transport, yielding a variety of qualitatively different approaches. We present a review of four approaches and demonstrate the utility of these methods via their application to the same sample analytic model, the canonical(More)
Using filter-space techniques, we study the scale-to-scale transport of energy in a quasi-two-dimensional, weakly turbulent fluid flow averaged along the trajectories of fluid elements. We find that although the spatial mean of this Lagrangian-averaged flux is nearly unchanged from its Eulerian counterpart, the spatial structure of the scale-to-scale energy(More)
Natural convection of a fluid due to a heated or cooled boundary has been studied within a myriad of different contexts due to the prevalence of the phenomenon in environmental and engineered systems. It has, however, hitherto gone unrecognized that boundary-induced natural convection can propel immersed objects. We experimentally investigate the motion of(More)
While more rigorous and sophisticated methods for identifying Lagrangian based coherent structures exist, the finite-time Lyapunov exponent (FTLE) field remains a straightforward and popular method for gaining some insight into transport by complex, time-dependent two-dimensional flows. In light of its enduring appeal, and in support of good practice, we(More)
  • 1