Learn More
In December 1999, IBM announced the start of a five-year effort to build a massively parallel computer, to be applied to the study of biomolecular phenomena such as protein folding. The project has two main goals: to advance our understanding of the mechanisms behind protein folding via large-scale simulation, and to explore novel ideas in massively(More)
Rhodopsin, the G protein-coupled receptor primarily responsible for sensing light, is found in an environment rich in polyunsaturated lipid chains and cholesterol. Biophysical experiments have shown that lipid unsaturation and cholesterol both have significant effects on rhodopsin's stability and function; omega-3 polyunsaturated chains, such as(More)
High performance computing is required to make feasible simulations of whole organ models of the heart with biophysically detailed cellular models in a clinical setting. Increasing model detail by simulating electrophysiology and mechanical models increases computation demands. We present scaling results of an electro - mechanical cardiac model of two(More)
We present a 118-ns molecular dynamics simulation of rhodopsin embedded in a bilayer composed of a 2:2:1 mixture of 1-stearoyl-2-docosahexaenoyl-phosphatidylcholine (SDPC), 1-stearoyl-2-docosahexaenoyl-phosphatidylethanolamine (SDPE), and cholesterol, respectively. The simulation demonstrates that the protein breaks the lateral and transverse symmetry of(More)
An unresolved question about GPCR function is the role of membrane components in receptor stability and activation. In particular, cholesterol is known to affect the function of membrane proteins, but the details of its effect on GPCRs are still elusive. Here, we describe how cholesterol modulates the behavior of the TM1-TM2-TM7-helix 8(H8) functional(More)
Photoisomerization of the retinylidene chromophore of rhodopsin is the starting point in the vision cascade. A counterion switch mechanism that stabilizes the retinal protonated Schiff base (PSB) has been proposed to be an essential step in rhodopsin activation. On the basis of vibrational and UV-visible spectroscopy, two counterion switch models have(More)
The recently solved crystallographic structures for the A(2A) adenosine receptor and the beta(1) and beta(2) adrenergic receptors have shown important differences between members of the class-A G-protein-coupled receptors and their archetypal model, rhodopsin, such as the apparent breaking of the ionic lock that stabilizes the inactive structure. Here, we(More)
This paper describes a novel spatial-force decomposition for N-body simulations for which we observe O(sqrt(p)) communication scaling. This has enabled Blue Matter to approach the effective limits of concurrency for molecular dynamics using particle-mesh (FFT-based) methods for handling electrostatic interactions. Using this decomposition, Blue Matter(More)
YORKTOWN HEIGHTS, NY, December 6, 1999-IBM today announced a new $100 million exploratory research initiative to build a supercomputer 500 times more powerful than the world's fastest computers today. The new computer-nicknamed "Blue Gene" by IBM researchers-will be capable of more than one quadrillion operations per second (one petaflop). This level of(More)