Michael Pitman

Learn More
LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be(More)
This paper presents strong scaling performance data for the Blue Matter molecular dynamics framework using a novel n-body spatial decomposition and a collective communications technique implemented on both MPI and low level hardware interfaces. Using Blue Matter on Blue Gene/L, we have measured scalability through 16,384 nodes with measured time per(More)
Future multiscale and multiphysics models that support research into human disease, translational medical science, and treatment can utilize the power of high-performance computing (HPC) systems. We anticipate that computationally efficient multiscale models will require the use of sophisticated hybrid programming models, mixing distributed message-passing(More)
In December 1999, IBM announced the start of a five-year effort to build a massively parallel computer, to be applied to the study of biomolecular phenomena such as protein folding. The project has two main goals: to advance our understanding of the mechanisms behind protein folding via large-scale simulation, and to explore novel ideas in massively(More)
This paper provides an overview of the Blue Matter application development effort within the Blue Gene project that supports our scientific simulation efforts in the areas of protein folding and membrane-protein systems. The design philosophy of the Blue Gene/L architecture relies on large numbers of power efficient nodes (whose technology is derived from(More)
Blue Gene/L uses a large number of low power processors, together with multiple integrated interconnection networks, to build a supercomputer with low cost, space and power consumption. It uses a novel system software architecture designed with application scalability in mind. However, whether real applications will scale to tens of thousands of processors(More)
While developing the protein folding application for the IBM Blue Genet/L supercomputer, some frequently executed computational kernels were encountered. These were significantly more complex than the linear algebra kernels that are normally provided as tuned libraries with modern machines. Using regular library functions for these would have resulted in an(More)
A three-dimensional field-based similarity search and alignment method for flexible molecules is introduced. The conformational space of a flexible molecule is represented in terms of fragments and torsional angles of allowed conformations. A user-definable property field is used to compute features of fragment pairs. Features are generalizations of CoMMA(More)
N-body simulations present some of the most interesting challenges in the area of massively parallel computing, especially when the object is to improve the time to solution for a fixed-size problem. The Blue Matter molecular simulation framework was developed specifically to address these challenges, to explore programming models for massively parallel(More)