Learn More
High performance computing is required to make feasible simulations of whole organ models of the heart with biophysically detailed cellular models in a clinical setting. Increasing model detail by simulating electrophysiology and mechanical models increases computation demands. We present scaling results of an electro - mechanical cardiac model of two(More)
In December 1999, IBM announced the start of a five-year effort to build a massively parallel computer, to be applied to the study of biomolecular phenomena such as protein folding. The project has two main goals: to advance our understanding of the mechanisms behind protein folding via large-scale simulation, and to explore novel ideas in massively(More)
This paper describes a novel spatial-force decomposition for N-body simulations for which we observe O(sqrt(p)) communication scaling. This has enabled Blue Matter to approach the effective limits of concurrency for molecular dynamics using particle-mesh (FFT-based) methods for handling electrostatic interactions. Using this decomposition, Blue Matter(More)
YORKTOWN HEIGHTS, NY, December 6, 1999-IBM today announced a new $100 million exploratory research initiative to build a supercomputer 500 times more powerful than the world's fastest computers today. The new computer-nicknamed "Blue Gene" by IBM researchers-will be capable of more than one quadrillion operations per second (one petaflop). This level of(More)
Future multiscale and multiphysics models that support research into human disease, translational medical science, and treatment can utilize the power of high-performance computing (HPC) systems. We anticipate that computationally efficient multiscale models will require the use of sophisticated hybrid programming models, mixing distributed message-passing(More)
An unresolved question about GPCR function is the role of membrane components in receptor stability and activation. In particular, cholesterol is known to affect the function of membrane proteins, but the details of its effect on GPCRs are still elusive. Here, we describe how cholesterol modulates the behavior of the TM1-TM2-TM7-helix 8(H8) functional(More)
We present a detailed analysis of the behavior of the highly flexible post-translational lipid modifications of rhodopsin from multiple-microsecond all-atom molecular dynamics simulations. Rhodopsin was studied in a realistic membrane environment that includes cholesterol, as well as saturated and polyunsaturated lipids with phosphocholine and(More)
Recent isothiocyanate covalent labeling studies have suggested that a classical cannabinoid, (-)-7'-isothiocyanato-11-hydroxy-1',1'dimethylheptyl-hexahydrocannabinol (AM841), enters the cannabinoid CB2 receptor via the lipid bilayer (Pei, Y., Mercier, R. W., Anday, J. K., Thakur, G. A., Zvonok, A. M., Hurst, D., Reggio, P. H., Janero, D. R., and(More)
The authors offer a critique of the privileging of subjectivity in psychoanalysis characteristic of what Hanly has called interactionism, with specific reference to the work of Renik. First, Renik's argument for the irreducible subjectivity of the analyst is explored and critiqued from a philosophical perspective. The need for and plausibility of a subtler(More)